Syntheses, supramolecular networks and Hirshfeld surface and thermal analyses of two new cadmium chloride coordination polymers with an N,O-chelating ligand

2019 ◽  
Vol 75 (2) ◽  
pp. 120-127 ◽  
Author(s):  
Rafika Bouchene ◽  
Sofiane Bouacida

Two new coordination polymers, namely poly[[(3-aminopyrazin-4-ium-2-carboxylate-κ2 N 1,O)di-μ-chlorido-cadmium(II)] monohydrate], {[CdCl2(C5H5N3O2)]·H2O} n , (1), and poly[2-amino-3-carboxypyrazin-1-ium [(3-aminopyrazine-2-carboxylato-κ2 N 1,O)di-μ-chlorido-cadmium(II)] monohydrate], {(C5H6N3O2)[Cd(C5H4N3O2)Cl2]·H2O} n , (2), have been synthesized from the reaction of cadmium(II) chloride and 3-aminopyrazine-2-carboxylic acid (Hapca) under mild conditions in acidic media. The two coordination polymers have been characterized by single-crystal X-ray diffraction and show chloride-bridged zigzag chains with octahedrally coordinated metal ions, where Hapca acts as a bidentate ligand via the π-conjugated N atom and a carboxylate O atom. The chains are further interconnected via noncovalent interactions into three-dimensional supramolecular networks. The dominant H...O and H...Cl interactions for both compounds were quantified using Hirshfeld surface analysis. The thermal stability and topological analysis of the two-dimensional networks of (1) and (2) are also discussed.

2006 ◽  
Vol 59 (9) ◽  
pp. 647 ◽  
Author(s):  
Yong-Tao Wang ◽  
Gui-Mei Tang ◽  
Da-Wei Qin

Three new inorganic–organic coordination polymers based on a versatile linking unit 2-(1H-imidazole-1-yl)acetate (Hima) and divalent Mn(ii), Ni(ii), and Cu(ii) ions, exhibiting two kinds of two dimensionalities with different topological structures, have been prepared in water medium and structurally characterized by single-crystal X-ray diffraction analysis. Reaction of MnCl2·4H2O and Ni(NO3)2·6H2O with Hima yielded neutral two-dimensional (2D) coordination polymers [M(ima)2]n, M = Mn(ii) 1, and Ni(ii) 2 with isostructural 2D coordination polymers possessing (3,6) topology structures, which further stack into three-dimensional (3D) supramolecular networks through C–H···O weak interactions. However, when Cu(NO3)2·4H2O was used, a neutral 2D coordination polymer [Cu(ima)2]n 3 consisting of rhombus units was generated, which showed a 3D supramolecular network through C–H···O weak interactions. Among these polymers, the building block ima anion exhibits different coordination modes. These results indicate that the versatile nature of this flexible ligand, together with the coordination preferences of the metal ions, plays a critical role in construction of these novel coordination polymers. Spectral and thermal properties of these new materials have also been investigated.


2018 ◽  
Vol 74 (2) ◽  
pp. 218-223 ◽  
Author(s):  
Ning-Ning Ji ◽  
Zhi-Qiang Shi ◽  
Hai-Liang Hu

The design and synthesis of coordination polymers with a self-penetrating architecture has attracted much interest not only due to their interesting structures but also due to their potential applications. 5,5′-Bis(pyridin-4-yl)-2,2′-bithiophene (bpbp), as a conjugated bithiophene ligand, can exhibit trans and cis conformations and this can lead to the construction of a self-penetrating architecture. In addition, the semi-rigid ancillary ligand 4,4′-oxybis(benzoic acid) (H2oba) can adopt different coordination modes, resulting in coordination polymers with high-dimensional skeletons. A new CdII coordination polymer based on mixed ligands, namely poly[diaquapentakis[μ-5,5′-bis(pyridin-4-yl)-2,2′-bithiophene-κ2 N:N′]bis(nitrato-κ2 O,O′)tetrakis(μ3-4,4′-oxydibenzoato)-κ10 O:O,O′:O′′,O′′′;κ6 O:O′:O′′-pentacadmium(II)], [Cd5(C14H14O5)4(NO3)2(C18H12N2S2)5(H2O)2] n , (I), has been synthesized under solvothermal conditions and characterized by single-crystal X-ray diffraction, IR spectroscopy and elemental analysis. Single-crystal X-ray diffraction indicates that there are three crystallographically independent CdII cations, three bpbp ligands, two deprotonated oba2− ligands, one nitrate ligand and one coordinated water molecule in the asymmetric unit. One CdII centre is seven-coordinated, exhibiting a distorted {CdN2O5} pentagonal bipyramidal geometry, while the other two Cd centres are both six-coordinated, showing slightly distorted {CdN2O4} octahedral geometries. The most interesting feature is the co-existence of trans and cis conformations in a single net, allowing structural interpenetration via self-threading and yet the expected self-penetrating structure was obtained. Topological analysis shows that the whole three-dimensional framework can be classified as a 3-nodal (4,6,6)-c net with Schläfli symbol {613.82}2{66}, which is a new topology. Furthermore, the luminescence properties of (I) were examined in the solid state at room temperature.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Muhammad Naeem Ahmed ◽  
Muneeba Arif ◽  
Hina Andleeb ◽  
Syed Wadood Ali Shah ◽  
Ifzan Arshad ◽  
...  

Three hydrazide-based Schiff bases have been synthesized and characterized by IR, UV-vis and X-ray diffraction methods. A detail analysis of intermolecular interactions has been performed by Hirshfeld surface analysis and DFT calculations.


2019 ◽  
Vol 75 (8) ◽  
pp. 1073-1083 ◽  
Author(s):  
Feng Su ◽  
Cheng-Yong Zhou ◽  
Lin-Tao Wu ◽  
Xi Wu ◽  
Jing Su ◽  
...  

Two CoII-based coordination polymers, namely poly[(μ4-biphenyl-2,2′,5,5′-tetracarboxylato){μ2-1,3-bis[(1H-imidazol-1-yl)methyl]benzene}dicobalt(II)], [Co2(C16H6O8)(C14H14N4)2] n or [Co2(o,m-bpta)(1,3-bimb)2] n (I), and poly[[aqua(μ4-biphenyl-2,2′,5,5′-tetracarboxylato){1,4-bis[(1H-imidazol-1-yl)methyl]benzene}dicobalt(II)] dihydrate], {[Co2(C16H6O8)(C14H14N4)2(H2O)2]·4H2O} n or {[Co2(o,m-bpta)(1,4-bimb)2(H2O)2]·4H2O} n (II), were synthesized from a mixture of biphenyl-2,2′,5,5′-tetracarboxylic acid, i.e. [H4(o,m-bpta)], CoCl2·6H2O and N-donor ligands under solvothermal conditions. The complexes were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction and powder X-ray diffraction analysis. The bridging (o,m-bpta)4− ligands combine with CoII ions in different μ4-coordination modes, leading to the formation of one-dimensional chains. The central CoII atoms display tetrahedral [CoN2O2] and octahedral [CoN2O4] geometries in I and II, respectively. The bis[(1H-imidazol-1-yl)methyl]benzene (bimb) ligands adopt trans or cis conformations to connect CoII ions, thus forming two three-dimensional (3D) networks. Complex I shows a (2,4)-connected 3D network with left- and right-handed helical chains constructed by (o,m-bpta)4− ligands. Complex II is a (4,4)-connected 3D novel network with ribbon-like chains formed by (o,m-bpta)4− linkers. Magnetic studies indicate an orbital contribution to the magnetic moment of I and II due to the longer Co...Co distances. An attempt has been made to fit the χM T results to the magnetic formulae for mononuclear CoII complexes, the fitting indicating the presence of weak antiferromagnetic interactions between the CoII ions.


2015 ◽  
Vol 68 (1) ◽  
pp. 121 ◽  
Author(s):  
Wenlong Liu ◽  
Xueying Wang ◽  
Mengqiang Wu ◽  
Bing Wang

Two new coordination polymers, namely, {[Cd3(bpt)2(bimb)2]·2(H2O)}n (1) and [Zn3(bpt)2(bimb)2]n (2) (bpt = biphenyl-3,4′,5-tricarboxylate, bimb = 1,4-bis(1-imidazol-yl)-2,5-dimethyl benzene), have been obtained under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analysis and further characterised by elemental analysis and infrared spectroscopy. Complex 1 exhibits a trinodal (4,4,4)-connected topology with Schläfli symbol of (4.62.83)4.(64.82). Complex 2 is also a three-dimensional structure and displays a (3,4,6)-connected topology with Schläfli symbol of (4.62)2.(42.66.85.102).(64.82). It is shown that the asymmetrically tricarboxylate can bear diverse structures regulated by metal ions. The photoluminescence behaviours of compounds 1 and 2 were also discussed.


2015 ◽  
Vol 68 (6) ◽  
pp. 956 ◽  
Author(s):  
Ming-An Dang ◽  
Zi-Feng Li ◽  
Ying Liu ◽  
Gang Li

Three coordination polymers [Sr(p-H2MOPhIDC)2]n (1) (p-H3MOPhIDC = 2-p-methoxyphenyl-1H-imidazole-4,5-dicarboxylic acid), {[Cd2(p-HMOPhIDC)2(4,4′-bipy)]⋅H2O}n (4,4′-bipy = 4,4′-bipyridine) (2), and [Zn(p-HMOPhIDC)(4,4′-bipy)]n (3) have been solvothermally synthesized, and structurally characterized by single-crystal X-ray diffraction. Polymer 1 indicates a three-dimensional framework, which can be simplified as a 6-connected lattice. Polymer 2 is also a three-dimensional framework, and contains mixed bridging ligands HMOPhIDC2– and 4,4′-bipy. Polymer 3 exhibits a sheet structure bearing infinite rectangles. The coordination modes of the p-H3MOPhIDC ligand, and the thermal and solid-state photoluminescence properties of the polymers have been investigated as well.


2021 ◽  
Author(s):  
Feng-Zhen Hua ◽  
Chao Feng ◽  
Wei-Nan Xie ◽  
Yi-Ni Luo ◽  
Ling-Mei Zhang ◽  
...  

Abstract Two new coordination polymers, namely, [Cu2(L)2(4,4′-bpy)]n (1) and [Cd(HL)Cl(1,10′-phen)]n (2) (H2L = 1H-pyrazole-3-carboxylic acid, 4,4′-bpy = 4,4′-bipyridine, 1,10′-phen = 1,10-phenanthroline) have been synthesized via solvothermal method and were structurally characterized by single-crystal X-ray diffraction, FT-IR, elemental analysis and PXRD. The two complexes are both infinite 1D chain structures, in complex 1 the H2L ligands are completely deprotonated and chelating the metal centers, while in complex 2, H2L ligands play a role in chelating-bridging the metal centers. What’s more, the two complexes further extended to 3D supramolecular networks by hydrogen bonds and weak C–H⋯π interactions. The weak intermolecular interactions existed in the complexes structures were further studied by Hirshfeld surface analysis and 2D fingerprint plots. In addition, these two transition mental complexes exhibit high intense electrochemiluminescence (ECL) in N,N-dimethylformamide (DMF) and after ten circulations the ECL intensity still remains stable, which can be a useful guide for the construct of new polymers ECL materials.


2019 ◽  
Vol 75 (4) ◽  
pp. 422-432 ◽  
Author(s):  
Chao Bai ◽  
Bin Liu ◽  
Huai-Ming Hu ◽  
Jin-Dian Li ◽  
Xiaofang Wang ◽  
...  

Three series of lanthanide coordination polymers, namely catena-poly[[lanthanide(III)-μ2-(benzene-1,2-dicarboxylato)-μ2-[2-(2,2′:6′,2′′-terpyridin-4′-yl)benzoato]] monohydrate], {[Ln(C8H4O4)(C22H14N3O2)]·H2O} n or {[Ln(1,2-bdc)(L)]·H2O} n , with lanthanide (Ln) = dysprosium (Dy, 1), holmium (Ho, 2) and erbium (Er, 3), poly[bis(μ2-benzene-1,3-dicarboxylato)bis[μ2-2-(2,2′:6′,2′′-terpyridin-4′-yl)benzoato]dilanthanide(III)], [Ln2(C8H4O4)2(C22H14N3O2)2] n or [Ln2(1,3-bdc)2(L)2] n , with Ln = gadolinium (Gd, 4), Ho (5) and Er (6), and poly[(μ2-benzene-1,4-dicarboxylato)[μ2-2-(2,2′:6′,2′′-terpyridin-4′-yl)benzoato]lanthanide(III)], [Ln(C8H4O4)(C22H14N3O2)] n or [Ln(1,4-bdc)(L)] n , with Ln = Dy (7), Ho (8), Er (9) and ytterbium (Yb, 10), were synthesized under hydrothermal conditions and characterized by elemental analysis, IR and single-crystal X-ray diffraction. Compounds 1–3 possess one-dimensional loop chains with Ln2(COO)2 units, which are extended into three-dimensional (3D) supramolecular structures by π–π interactions. Isostructural compounds 5 and 6 show 6-connected 3D networks, with pcu topology consisting of Ln2(COO)2 units. Compounds 7–10 display 8-connected 3D frameworks with the topological type rob, consisting of Ln2(COO)2 units. The influence of the coordination orientations of the aromatic dicarboxylate groups on the crystal structures is discussed.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 505 ◽  
Author(s):  
Phil Liebing ◽  
Florian Oehler ◽  
Juliane Witzorke

In the construction of heterobimetallic coordination polymers based on dithiocarbamato–carboxylate (DTCC ligands), platinum as a thiophilic metal center can be replaced by the cheaper nickel or palladium. The compounds Zn[Pd(HL)2] and Zn2[M(L)2] (M = Ni, Pd; L = {SSC-N(CH2COO)2}3−) were prepared in a sequential approach starting from K3(L). The products were characterized by IR and NMR spectroscopy, thermal analyses, and single-crystal X-ray diffraction. The products decompose under nitrogen between 300 and 400 °C. Zn[Pd(HL)2] · 6H2O forms polymeric chains in the solid state, and the Zn2[M(L)2] · 14H2O (M = Ni, Pd) exhibit two-dimensional polymeric structures, each being isotypic with the respective Zn/Pt analogs. While the carboxylate groups in all these products are coordinated to zinc in a κO-monodentate mode, a structural variant of Zn2[Ni(L)2] having κO:κO′-briding carboxylate groups was also obtained. Exchange of the metal sites in the two Ni/Zn compounds was not observed, and these compounds are therefore diamagnetic.


2017 ◽  
Vol 41 (6) ◽  
pp. 365-369 ◽  
Author(s):  
Chongchong Xue ◽  
Jingwen Shi ◽  
Daopeng Zhang

The coordination polymers {Mg[Fe(L)(CN)5]}n·0.5nH2O and {MgCu2(CH3COO)6}n [L = bis( N-imidazolyl)methane] have been synthesised. X-ray diffraction revealed that {Mg[Fe(L)(CN)5]}n·0.5nH2O has a one-dimensional neutral chain structure consisting of alternating [Mg(L)2(H2O)2)]2+ species and [Fe(L)(CN)5]2– building blocks, which can be further linked into a three-dimensional supramolecular structure by inter-chain p–p interactions. {MgCu2(CH3COO)6}n has a three-dimensional network with the [MgCu2(CH3COO)6] unit as neutral core extended by Mg–O bonds. Magnetic susceptibility studies on {MgCu2(CH3COO)6}n revealed antiferromagnetic interactions between adjacent Cu(II) ions.


Sign in / Sign up

Export Citation Format

Share Document