scholarly journals On the design of molecular excitonic circuits for quantum computing: the universal quantum gates

2020 ◽  
Vol 22 (5) ◽  
pp. 3048-3057 ◽  
Author(s):  
Maria A. Castellanos ◽  
Amro Dodin ◽  
Adam P. Willard

This manuscript presents a strategy for controlling the transformation of excitonic states through the design of circuits made up of coupled organic dye molecules.

2019 ◽  
Author(s):  
Maria Castellanos ◽  
Amro Dodin ◽  
Adam Willard

This manuscript presents a theoretical strategy for encoding elementary quantum computing operations into the design of molecular excitonic circuits. Specifically, we show how the action of a unitary transformation of coupled two-level systems can be equivalently represented by the evolution of an exciton in a coupled network of dye molecules. We apply this strategy to identify the geometric parameters for circuits that perform universal quantum logic gate operations. We quantify the design space for these circuits and how their performance is affected by environmental noise.


2019 ◽  
Author(s):  
Maria Castellanos ◽  
Amro Dodin ◽  
Adam Willard

This manuscript presents a theoretical strategy for encoding elementary quantum computing operations into the design of molecular excitonic circuits. Specifically, we show how the action of a unitary transformation of coupled two-level systems can be equivalently represented by the evolution of an exciton in a coupled network of dye molecules. We apply this strategy to identify the geometric parameters for circuits that perform universal quantum logic gate operations. We quantify the design space for these circuits and how their performance is affected by environmental noise.


2001 ◽  
Vol 1 (Special) ◽  
pp. 143-150
Author(s):  
P. Echternach ◽  
C.P. Williams ◽  
S.C. Dultz ◽  
S. Braunstein ◽  
J.P. Dowling

Key words: quantum gates, cooper pair box, quantum computing


2006 ◽  
Vol 04 (02) ◽  
pp. 233-296 ◽  
Author(s):  
GOONG CHEN ◽  
ZIJIAN DIAO ◽  
JONG U. KIM ◽  
ARUP NEOGI ◽  
KERIM URTEKIN ◽  
...  

Semiconductor quantum dots are a promising candidate for future quantum computer devices. Presently, there are three major proposals for designing quantum computing gates based on quantum dot technology: (i) electrons trapped in microcavity; (ii) spintronics; (iii) biexcitons. We survey these designs and show mathematically how, in principle, they will generate 1-bit rotation gates as well as 2-bit entanglement and, thus, provide a class of universal quantum gates. Some physical attributes and issues related to their limitations, decoherence and measurement are also discussed.


Author(s):  
Sebastian Horvat ◽  
Xiaoqin Gao ◽  
Borivoje Dakic

Abstract A universal set of gates for (classical or quantum) computation is a set of gates that can be used to approximate any other operation. It is well known that a universal set for classical computation augmented with the Hadamard gate results in universal quantum computing. Motivated by the latter, we pose the following question: can one perform universal quantum computation by supplementing a set of classical gates with a quantum control, and a set of quantum gates operating solely on the latter? In this work we provide an affirmative answer to this question by considering a computational model that consists of 2n target bits together with a set of classical gates controlled by log(2n + 1) ancillary qubits. We show that this model is equivalent to a quantum computer operating on n qubits. Furthermore, we show that even a primitive computer that is capable of implementing only SWAP gates, can be lifted to universal quantum computing, if aided with an appropriate quantum control of logarithmic size. Our results thus exemplify the information processing power brought forth by the quantum control system.


2021 ◽  
Author(s):  
Pietro Lombardi ◽  
Ramin Emadi ◽  
Rocco Duquennoy ◽  
Ghiilam Murtaza ◽  
Maja Colautti ◽  
...  

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 329
Author(s):  
Tomoyuki Morimae ◽  
Suguru Tamaki

It is known that several sub-universal quantum computing models, such as the IQP model, the Boson sampling model, the one-clean qubit model, and the random circuit model, cannot be classically simulated in polynomial time under certain conjectures in classical complexity theory. Recently, these results have been improved to ``fine-grained" versions where even exponential-time classical simulations are excluded assuming certain classical fine-grained complexity conjectures. All these fine-grained results are, however, about the hardness of strong simulations or multiplicative-error sampling. It was open whether any fine-grained quantum supremacy result can be shown for a more realistic setup, namely, additive-error sampling. In this paper, we show the additive-error fine-grained quantum supremacy (under certain complexity assumptions). As examples, we consider the IQP model, a mixture of the IQP model and log-depth Boolean circuits, and Clifford+T circuits. Similar results should hold for other sub-universal models.


Sign in / Sign up

Export Citation Format

Share Document