A look at periodic trends in d-block molecular electrocatalysts for CO2 reduction

2019 ◽  
Vol 48 (26) ◽  
pp. 9454-9468 ◽  
Author(s):  
Changcheng Jiang ◽  
Asa W. Nichols ◽  
Charles W. Machan

Periodic trends in the electronic structure of the transition metal centers can be used to explain the observed CO2 reduction activities in molecular electrocatalysts for CO2 reductions. Research activities concerning both horizontal and vertical trends have been summarized with mononuclear complexes from Group 6 to Group 10.

2021 ◽  
Author(s):  
Sudarshan Vijay ◽  
Wen Ju ◽  
Sven Brückner ◽  
Peter Strasser ◽  
Karen Chan

<p>CO is the simplest product from CO<sub>2</sub> electroreduction (CO<sub>2</sub>R), but the identity and nature of its rate limiting step remains controversial. Here we investigate the activity of both transition metals (TMs) and metal-nitrogen doped carbon catalysts (MNCs), and a present unified mechanistic picture of CO<sub>2</sub>R to for both these classes of catalysts. By consideration of the electronic structure through a Newns-Andersen model, we find that on MNCs, like TMs, electron transfer to CO<sub>2</sub><sub> </sub>is facile, such that CO<sub>2</sub> (g) adsorption is driven by adsorbate dipole-field interactions. Using density functional theory with explicit consideration of the interfacial field, we find CO<sub>2</sub> * adsorption to generally be limiting on TMs, while MNCs can be limited by either CO<sub>2</sub>* adsorption or by the proton-electron transfer reaction to form COOH*. We evaluate these computed mechanisms against pH-dependent experimental activity measurements on CO<sub>2</sub>R to CO activity for Au, FeNC, and NiNC. We present a unified activity volcano that, in contrast to previous analyses, includes the decisive CO<sub>2</sub>*<sub> </sub>and COOH* binding strengths as well as the critical adsorbate dipole-field interactions. We furthermore show that MNC catalysts are tunable towards higher activity away from transition metal scaling, due to the stabilization of larger dipoles resulting from their discrete and narrow <i>d</i>-states. The analysis suggests two design principles for ideal catalysts: moderate CO<sub>2</sub>* and COOH* binding strengths as well as large dipoles on the CO<sub>2</sub>*<sub> </sub>intermediate. We suggest that these principles can be exploited in materials with similar electronic structure to MNCs, such as supported single-atom catalysts, molecules, and nanoclusters, 2D materials, and ionic compounds towards higher CO<sub>2</sub>R activity. This work captures the decisive impact of adsorbate dipole-field interactions in CO<sub>2</sub>R to CO and paves the way for computational-guided design of new catalysts for this reaction.</p>


2003 ◽  
Vol 679 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Srinivasan Priya ◽  
Maravanji S Balakrishna ◽  
Joel T Mague

Author(s):  
Rajeshwaree B. ◽  
Afsar Ali ◽  
Ab Qayoom Mir ◽  
Jagrit Grover ◽  
Goutam Kumar Lahiri ◽  
...  

The alarming growth in atmospheric CO2 has emerged as one of the prime concerns in the context of climate change. The power, petroleum, and construction sectors are the major contributors...


ChemInform ◽  
2010 ◽  
Vol 24 (35) ◽  
pp. no-no
Author(s):  
R. KEMPE ◽  
J. SIELER ◽  
D. WALTHER ◽  
J. REINHOLD ◽  
K. ROMMEL

2021 ◽  
Author(s):  
Sudarshan Vijay ◽  
Wen Ju ◽  
Sven Brückner ◽  
Peter Strasser ◽  
Karen Chan

<p>CO is the simplest product from CO<sub>2</sub> electroreduction (CO<sub>2</sub>R), but the identity and nature of its rate limiting step remains controversial. Here we investigate the activity of both transition metals (TMs) and metal-nitrogen doped carbon catalysts (MNCs), and a present unified mechanistic picture of CO<sub>2</sub>R to for both these classes of catalysts. By consideration of the electronic structure through a Newns-Andersen model, we find that on MNCs, like TMs, electron transfer to CO<sub>2</sub><sub> </sub>is facile, such that CO<sub>2</sub> (g) adsorption is driven by adsorbate dipole-field interactions. Using density functional theory with explicit consideration of the interfacial field, we find CO<sub>2</sub> * adsorption to generally be limiting on TMs, while MNCs can be limited by either CO<sub>2</sub>* adsorption or by the proton-electron transfer reaction to form COOH*. We evaluate these computed mechanisms against pH-dependent experimental activity measurements on CO<sub>2</sub>R to CO activity for Au, FeNC, and NiNC. We present a unified activity volcano that, in contrast to previous analyses, includes the decisive CO<sub>2</sub>*<sub> </sub>and COOH* binding strengths as well as the critical adsorbate dipole-field interactions. We furthermore show that MNC catalysts are tunable towards higher activity away from transition metal scaling, due to the stabilization of larger dipoles resulting from their discrete and narrow <i>d</i>-states. The analysis suggests two design principles for ideal catalysts: moderate CO<sub>2</sub>* and COOH* binding strengths as well as large dipoles on the CO<sub>2</sub>*<sub> </sub>intermediate. We suggest that these principles can be exploited in materials with similar electronic structure to MNCs, such as supported single-atom catalysts, molecules, and nanoclusters, 2D materials, and ionic compounds towards higher CO<sub>2</sub>R activity. This work captures the decisive impact of adsorbate dipole-field interactions in CO<sub>2</sub>R to CO and paves the way for computational-guided design of new catalysts for this reaction.</p>


2010 ◽  
Vol 133 (2) ◽  
pp. 024305 ◽  
Author(s):  
Ekram Hossain ◽  
David W. Rothgeb ◽  
Caroline Chick Jarrold

2021 ◽  
Author(s):  
Daniyal Kiani ◽  
Sagar Sourav ◽  
Yadan Tang ◽  
Jonas Baltrusaitis ◽  
Israel E. Wachs

The literature on methane dehydroaromatization (MDA) to benzene using ZSM-5 supported, group V–VIII transition metal-based catalysts (MOx/ZSM-5) is critically reviewed with a focus on in situ and operando molecular insights.


Sign in / Sign up

Export Citation Format

Share Document