An airtight-cavity-structural triboelectric nanogenerator-based insole for high performance biomechanical energy harvesting

Nanoscale ◽  
2019 ◽  
Vol 11 (14) ◽  
pp. 6802-6809 ◽  
Author(s):  
Zhiming Lin ◽  
Yufen Wu ◽  
Qiang He ◽  
ChenChen Sun ◽  
Endong Fan ◽  
...  

A waterproof, high-output and airtight-cavity-airbag structural insole based on a TENG is presented to harvest human energy for driving wearable electronics.

2022 ◽  
Author(s):  
Dhiraj Bharti ◽  
Sushmitha Veeralingam ◽  
Sushmee Badhulika

Obtaining sustainable, high output power supply from triboelectric nanogenerators still remains a major issue which restricts their widespread use in self-powered electronic applications. In this work, an ultra-high performance, non-toxic,...


Nano Energy ◽  
2018 ◽  
Vol 53 ◽  
pp. 726-733 ◽  
Author(s):  
Zhaoling Li ◽  
Miaomiao Zhu ◽  
Qian Qiu ◽  
Jianyong Yu ◽  
Bin Ding

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Ye ◽  
Shaojun Dong ◽  
Jing Ren ◽  
Shengjie Ling

AbstractEnergy harvesting textiles (EHTs) have attracted much attention in wearable electronics and the internet-of-things for real-time mechanical energy harvesting associated with human activities. However, to satisfy practical application requirements, especially the demand for long-term use, it is challenging to construct an energy harvesting textile with elegant trade-off between mechanical and triboelectric performance. In this study, an energy harvesting textile was constructed using natural silk inspired hierarchical structural designs combined with rational material screening; this design strategy provides multiscale opportunities to optimize the mechanical and triboelectric performance of the final textile system. The resulting EHTs with traditional advantages of textiles showed good mechanical properties (tensile strength of 237 ± 13 MPa and toughness of 4.5 ± 0.4 MJ m−3 for single yarns), high power output (3.5 mW m−2), and excellent structural stability (99% conductivity maintained after 2.3 million multi-type cyclic deformations without severe change in appearance), exhibiting broad application prospects in integrated intelligent clothing, energy harvesting, and human-interactive interfaces.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3431
Author(s):  
Haichao Yuan ◽  
Hongyong Yu ◽  
Xiangyu Liu ◽  
Hongfa Zhao ◽  
Yiping Zhang ◽  
...  

Harvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor devices in the age of the Internet of Things. In this study, we propose a low-cost, easily fabricated and high-performance coniform Helmholtz resonator-based Triboelectric Nanogenerator (CHR-TENG) with the purpose of acoustic energy harvesting. Output performances of the CHR-TENG with varied geometrical sizes were systematically investigated under different acoustic energy conditions. Remarkably, the CHR-TENG could achieve a 58.2% higher power density per unit of sound pressure of acoustic energy harvesting compared with the ever-reported best result. In addition, the reported CHR-TENG was demonstrated by charging a 1000 μF capacitor up to 3 V in 165 s, powering a sensor for continuous temperature and humidity monitoring and lighting up as many as five 0.5 W commercial LED bulbs for acoustic energy harvesting. With a collection features of high output performance, lightweight, wide frequency response band and environmental friendliness, the cleverly designed CHR-TENG represents a practicable acoustic energy harvesting approach for powering sensor devices in the age of the Internet of Things.


Nano Energy ◽  
2017 ◽  
Vol 40 ◽  
pp. 282-288 ◽  
Author(s):  
Jiali Shen ◽  
Zhaoling Li ◽  
Jianyong Yu ◽  
Bin Ding

2019 ◽  
Vol 12 (2) ◽  
pp. 666-674 ◽  
Author(s):  
Kyung-Won Lim ◽  
Mahesh Peddigari ◽  
Chan Hee Park ◽  
Ha Young Lee ◽  
Yuho Min ◽  
...  

A high-performance magneto-mechano-triboelectric nanogenerator (MMTEG) is demonstrated for powering a wireless indoor positioning system.


Sign in / Sign up

Export Citation Format

Share Document