scholarly journals Synthesis and characterization of a novel, pH-responsive, bola-based dynamic crosslinked fracturing fluid

RSC Advances ◽  
2019 ◽  
Vol 9 (59) ◽  
pp. 34389-34400
Author(s):  
Juan Du ◽  
Kun Xiang ◽  
Liqiang Zhao ◽  
Xitang Lan ◽  
Pingli Liu ◽  
...  

Fracturing fluids are important media for hydraulic fracturing.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1783
Author(s):  
Klaudia Wilk-Zajdel ◽  
Piotr Kasza ◽  
Mateusz Masłowski

In the case of fracturing of the reservoirs using fracturing fluids, the size of damage to the proppant conductivity caused by treatment fluids is significant, which greatly influence the effective execution of hydraulic fracturing operations. The fracturing fluid should be characterized by the minimum damage to the conductivity of a fracture filled with proppant. A laboratory research procedure has been developed to study the damage effect caused by foamed and non-foamed fracturing fluids in the fractures filled with proppant material. The paper discusses the results for high quality foamed guar-based linear gels, which is an innovative aspect of the work compared to the non-foamed frac described in most of the studies and simulations. The tests were performed for the fracturing fluid based on a linear polymer (HPG—hydroxypropyl guar, in liquid and powder form). The rheology of nitrogen foamed-based fracturing fluids (FF) with a quality of 70% was investigated. The quartz sand and ceramic light proppant LCP proppant was placed between two Ohio sandstone rock slabs and subjected to a given compressive stress of 4000–6000 psi, at a temperature of 60 °C for 5 h. A significant reduction in damage to the quartz proppant was observed for the foamed fluid compared to that damaged by the 7.5 L/m3 natural polymer-based non-foamed linear fluid. The damage was 72.3% for the non-foamed fluid and 31.5% for the 70% foamed fluid, which are superior to the guar gum non-foamed fracturing fluid system. For tests based on a polymer concentration of 4.88 g/L, the damage to the fracture conductivity by the non-foamed fluid was 64.8%, and 26.3% for the foamed fluid. These results lead to the conclusion that foamed fluids could damage the fracture filled with proppant much less during hydraulic fracturing treatment. At the same time, when using foamed fluids, the viscosity coefficient increases a few times compared to the use of non-foamed fluids, which is necessary for proppant carrying capacities and properly conducted stimulation treatment. The research results can be beneficial for optimizing the type and performance of fracturing fluid for hydraulic fracturing in tight gas formations.


RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22517-22529
Author(s):  
Shuhao Liu ◽  
Yu-Ting Lin ◽  
Bhargavi Bhat ◽  
Kai-Yuan Kuan ◽  
Joseph Sang-II Kwon ◽  
...  

Viscosity modifying agents are one of the most critical components of hydraulic fracturing fluids, ensuring the efficient transport and deposition of proppant into fissures.


2021 ◽  
Vol 42 (03) ◽  
pp. 311-318
Author(s):  
Jia-hui WANG ◽  
◽  
Xiao-xuan ZENG ◽  
Yue WU ◽  
Xu-chen LYU ◽  
...  

2020 ◽  
Vol 5 (40) ◽  
pp. 12570-12581
Author(s):  
Anahita Rohani Shirvan ◽  
Nahid Hemmatinejad ◽  
Seyed Hajir Bahrami ◽  
Azadeh Bashari

2014 ◽  
Vol 933 ◽  
pp. 202-205
Author(s):  
Bo Cai ◽  
Yun Hong Ding ◽  
Yong Jun Lu ◽  
Chun Ming He ◽  
Gui Fu Duan

Hydraulic fracturing was first used in the late 1940s and has become a common technique to enhance the production of low-permeability formations.Hydraulic fracturing treatments were pumped into permeable formations with permeable fluids. This means that as the fracturing fluid was being pumped into the formation, a certain proportion of this fluid will being lost into formation as fluid leak-off. Therefore, leak-off coefficient is the most leading parameters of fracturing fluids. The accurate understanding of leak-off coefficient of fracturing fluid is an important guidance to hydraulic fracturing industry design. In this paper, a new field method of leak-off coefficient real time analysis model was presented based on instantaneous shut-in pressure (ISIP). More than 100 wells were fractured using this method in oil field. The results show that average liquid rates of post-fracturing was 22m3/d which double improvement compared with the past treatment wells. It had an important role for hydraulic fracturing stimulation treatment design in low permeability reservoirs and was proven that the new model for hydraulic fracturing treatment is greatly improved.


Sign in / Sign up

Export Citation Format

Share Document