scholarly journals Reducing uncertainty in simulation estimates of the surface tension through a two-scale finite-size analysis: thicker is better

RSC Advances ◽  
2019 ◽  
Vol 9 (61) ◽  
pp. 35803-35812 ◽  
Author(s):  
José L. Rivera ◽  
Jack F. Douglas

The variance in the surface tension of systems under vapor/liquid equilibrium is strongly affected by the size of the interfacial area. Wider layers increase the variance, but these increments disappear as the interfacial area grows.

Author(s):  
Sang Kyu Kwak ◽  
Jayant K Singh ◽  
Jhumpa Adhikari

The Morse potential energy function (PEF) is considered regarding the characterization of interaction forces of particles with tuning parameters. Phase coexistence of Morse fluids is predicted for different steepness and range of the PEF parameters using the grand-canonical transition matrix Monte Carlo (GC-TMMC) method, with quantification of the parameter S, which is the product of a constant with a unit of reciprocal length and the equilibrium distance between two molecules. We found that a lower limit of S exists bounded by infinite critical temperature. The critical properties of the vapor-liquid equilibrium curves are estimated using a rectilinear diameter method and a scaling law approach. A Clausius-Clayperon type relation of S and critical temperature is derived in this work. Vapor-liquid surface tension of Morse fluids by finite size scaling and GC-TMMC is also reported. Surface tensions are found to be higher at lower S.


1984 ◽  
Vol 15 (21) ◽  
Author(s):  
R. G. RUBIO ◽  
J. ARACIL ◽  
M. DIAZ PENA ◽  
J. A. R. RENUNCIO

Author(s):  
César A. García ◽  
Jessica J. Velandia ◽  
Mario A. Céspedes ◽  
Gerardo Rodríguez ◽  
Iván D. Gil

Sign in / Sign up

Export Citation Format

Share Document