equilibrium surface
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 12)

H-INDEX

30
(FIVE YEARS 1)

RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 611-625
Author(s):  
Said Tighadouini ◽  
Smaail Radi ◽  
Othmane Roby ◽  
Imad Hammoudan ◽  
Rafik Saddik ◽  
...  

The removal of heavy metals is attracting considerable attention due to their undesirable effects on the environment.


2021 ◽  
Vol 12 (4) ◽  
pp. 374-381
Author(s):  
G. I. Kovtun ◽  

The interfacial properties (dynamic and equilibrium surface tension, viscosity and elasticity moduli) of chitosan lactate have been studied at the liquid/air interface by the oscillating drop shape method. Isotherms of dynamic surface tension of chitosan lactate are similar to dependences for other polyelectrolyte solutions, in particular for proteins. Chitosan is a weak cationic polyelectrolyte which can change its conformation from a linear rod to a chaotic and compacted coil. Therefore, the experimental dependence of the equilibrium surface tension on concentration of chitosan lactate was analyzed with the adsorption model proposed earlier for proteins. This model accounts the possibility of polyelectrolyte molecules existence in surface layer in n states with different molar surface varying from the maximum value at very low surface coverage by polyelectrolyte molecules to a minimum value at high surface coverage. Good agreement between the calculated and experimental values of surface tension was observed. The dependences of the elasticity and viscosity moduli of chitosan lactate solutions on the drop oscillations frequency are conditioned by the influence of exchange processes both between the surface layer and the bulk solution and in the surface layer itself. An increase of the solution concentration intensifies the exchange processes, and an increase of the oscillation frequency suppresses them. It is shown that the dependence of the surface viscoelasticity modulus of chitosan lactate is extreme in nature with a pronounced maximum. The reason for such behavior is the possibility of changing the molar surface area of the polyelectrolyte at the interface dependent on the amount of adsorption and its structural properties. Attempt of theoretical description of the viscoelasticity modulus within the framework of model accounting mono- or bilayer adsorption did not lead to a satisfactory result, possibly due to barrier adsorption mechanism of chitosan. But bilayer model provide qualitative description of extreme behavior of surface viscoelasticity on concentration. The values of the surface viscoelasticity modulus of chitosan lactate occupy an intermediate position in comparison with the data available in the literature for globular and flexible-chain proteins, that is consistent with their molecular structure. In addition, the work shows the applicability of the adsorption model, developed earlier for proteins in the framework of a nonideal two-dimensional solution theory, for describing the surface properties of other polyelectrolytes. This makes it possible to obtain qualitative and quantitative information about the processes occurring in the systems under study.


2021 ◽  
pp. 118305
Author(s):  
Thu Thi-Yen Le ◽  
Siam Hussain ◽  
Ruey-Yug Tsay ◽  
Boris A. Noskov ◽  
Alexander Akentiev ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3479
Author(s):  
Joanna Piepiórka-Stepuk ◽  
Monika Sterczyńska ◽  
Tomasz Kalak ◽  
Marek Jakubowski

The paper presents the results concerning the influence of concentration and storage time on the equilibrium surface tension of chemical solutions used in a clean-in place (CIP) system. Standard cleaning solutions (prepared under laboratory conditions) and industrial solutions (used in a CIP system in a brewery) were subjected to tests. Solutions from the brewery were collected after being regenerated and changes in equilibrium surface tension were studied during a three-month storage. In the statistical analysis of the solutions, standard deviations were determined in relation to the averages, and a Tukey’s multiple comparison test was performed to determine the effect of dependent variables on the surface tension of solutions. From the results, a nonlinear regression model was developed that provided a mathematical description of the kinetics of changes in the wetting properties of the solutions during their storage. A linear–logarithmic function was adopted to describe the regeneration. Numerical calculations were performed based on the nonlinear least squares method using the Gauss–Newton algorithm. The adequacy of the regression models with respect to the empirical data was verified by the coefficient of determination R and the standard error of estimation Se. The results showed that as the concentration of the substance in the cleaning solution increased, its wetting properties decreased. The same effect was observed with increased storage time as the greatest changes occurred during the first eight weeks. The study also showed that the use of substances to stabilize the cleaning solutions prevented deterioration of their wetting properties, regardless of the concentration of the active substance or storage time.


Author(s):  
Siyuan Xing ◽  
Albert C. J. Luo ◽  
Jianzhe Huang

Abstract In this paper, the local and global dynamics of a periodically forced, quadratic-oscillator-based, infinite-equilibrium system is discussed. The local analysis of regular equilibriums and infinite-equilibriums is completed, and the global responses of the periodically forced infinite-equilibrium system are presented through numerical simulations. Near the infinite-equilibrium surface, the periodically forced infinite-equilibrium system can be reduced to a one-dimensional system and new contraction regions can be formed. The infinite-equilibrium surface can be artificially designed to control the motions of the original quadratic nonlinear oscillator. Such a property is like a discontinuous dynamical system, which can be used for controller design in nonlinear systems.


2020 ◽  
Vol 40 (4) ◽  
pp. 433-444 ◽  
Author(s):  
Jinlong Yang ◽  
Joseph M Michaud ◽  
Steven Jansen ◽  
H Jochen Schenk ◽  
Yi Y Zuo

Abstract The surface tension of xylem sap has been traditionally assumed to be close to that of the pure water because decreasing surface tension is thought to increase vulnerability to air seeding and embolism. However, xylem sap contains insoluble lipid-based surfactants, which also coat vessel and pit membrane surfaces, where gas bubbles can enter xylem under negative pressure in the process known as air seeding. Because of the insolubility of amphiphilic lipids, the surface tension influencing air seeding in pit pores is not the equilibrium surface tension of extracted bulk sap but the local surface tension at gas–liquid interfaces, which depends dynamically on the local concentration of lipids per surface area. To estimate the dynamic surface tension in lipid layers that line surfaces in the xylem apoplast, we studied the time-dependent and surface area-regulated surface tensions of apoplastic lipids extracted from xylem sap of four woody angiosperm plants using constrained drop surfactometry. Xylem lipids were found to demonstrate potent surface activity, with surface tensions reaching an equilibrium at ~25 mN m-1 and varying between a minimum of 19 mN m-1 and a maximum of 68 mN m-1 when changing the surface area between 50 and 160% around the equilibrium surface area. It is concluded that xylem lipid films in natural conditions most likely range from nonequilibrium metastable conditions of a supersaturated compression state to an undersaturated expansion state, depending on the local surface areas of gas–liquid interfaces. Together with findings that maximum pore constrictions in angiosperm pit membranes are much smaller than previously assumed, low dynamic surface tension in xylem turns out to be entirely compatible with the cohesion–tension and air-seeding theories, as well as with the existence of lipid-coated nanobubbles in xylem sap, and with the range of vulnerabilities to embolism observed in plants.


2019 ◽  
Vol 2 (8) ◽  
pp. 113-120
Author(s):  
Laurence D. Burke ◽  
Sebastian Garbarino ◽  
Louise Kinsella ◽  
Nageb S. Naser

2019 ◽  
Vol 8 (1) ◽  
pp. 185-190
Author(s):  
Satoshi Hamaguchi ◽  
Masashi Yamashiro ◽  
Hideaki Yamada

Sign in / Sign up

Export Citation Format

Share Document