Carbon coated porous silicon flakes with high initial coulombic efficiency and long-term cycling stability for lithium ion batteries

2019 ◽  
Vol 3 (9) ◽  
pp. 2361-2365 ◽  
Author(s):  
Xiaoyong Dou ◽  
Ming Chen ◽  
Jiantao Zai ◽  
Zhen De ◽  
Boxu Dong ◽  
...  

Silicon (Si) has been regarded as a promising next-generation anode material to replace carbon-based materials for lithium ion batteries (LIBs).

2020 ◽  
Vol 846 ◽  
pp. 156437
Author(s):  
Yan Zhang ◽  
Bisai Li ◽  
Bin Tang ◽  
Zeen Yao ◽  
Xiongjie Zhang ◽  
...  

Nanoscale ◽  
2020 ◽  
Vol 12 (32) ◽  
pp. 16901-16909
Author(s):  
Bowen Cong ◽  
Yongyuan Hu ◽  
Shanfu Sun ◽  
Yu Wang ◽  
Bo Wang ◽  
...  

A novel Fe3O4/C@VOx hierarchical nanospindle anode material for LIBs has been successfully designed and fabricated through a MOF-derived route, which delivers high coulombic efficiency, outstanding cycling stability and rate performance.


2020 ◽  
Vol 7 (14) ◽  
pp. 2651-2659 ◽  
Author(s):  
Shuting Sun ◽  
Ruhong Li ◽  
Wenhui Wang ◽  
Deying Mu ◽  
Jianchao Liu ◽  
...  

MWCNTs/Sn4P3@C with a coaxial cable-like structure demonstrates remarkable cycling stability and rate capability.


2016 ◽  
Vol 209 ◽  
pp. 299-307 ◽  
Author(s):  
Min-Gi Jeong ◽  
Mobinul Islam ◽  
Hoang Long Du ◽  
Yoon-Sung Lee ◽  
Ho-Hyun Sun ◽  
...  

2016 ◽  
Vol 4 (19) ◽  
pp. 7185-7189 ◽  
Author(s):  
Youguo Huang ◽  
Qichang Pan ◽  
Hongqiang Wang ◽  
Cheng Ji ◽  
Xianming Wu ◽  
...  

Sn@SnO2@C nanosheets decorated with MoS2 are prepared via a facile ball milling and hydrothermal method, and the Sn@SnO2@C@MoS2 composite shows high capacity and long-term cycling stability when used as an anode material for lithium-ion batteries.


2015 ◽  
Vol 8 (12) ◽  
pp. 3629-3636 ◽  
Author(s):  
Wenwu Li ◽  
Huiqiao Li ◽  
Zhijuan Lu ◽  
Lin Gan ◽  
Linbo Ke ◽  
...  

Layer structured GeP5 is firstly developed as an anode material for LIB, it delivers a reversible capacity of 2300 mA h g−1 with a very high initial coulombic efficiency of 95%.


2018 ◽  
Vol 2 (10) ◽  
pp. 1822-1828 ◽  
Author(s):  
Yan Li ◽  
Xinhai Li ◽  
Zhixing Wang ◽  
Huajun Guo ◽  
Tao Li ◽  
...  

LiNi0.8Co0.1Mn0.1O2 cathode derived from a novel [email protected](OH)2 hierarchical precursor exhibits improved tap density and initial coulombic efficiency, as well as excellent cycling stability and superior rate capability.


Sign in / Sign up

Export Citation Format

Share Document