Preparation of a Sn@SnO2@C@MoS2 composite as a high-performance anode material for lithium-ion batteries

2016 ◽  
Vol 4 (19) ◽  
pp. 7185-7189 ◽  
Author(s):  
Youguo Huang ◽  
Qichang Pan ◽  
Hongqiang Wang ◽  
Cheng Ji ◽  
Xianming Wu ◽  
...  

Sn@SnO2@C nanosheets decorated with MoS2 are prepared via a facile ball milling and hydrothermal method, and the Sn@SnO2@C@MoS2 composite shows high capacity and long-term cycling stability when used as an anode material for lithium-ion batteries.

2020 ◽  
Vol 846 ◽  
pp. 156437
Author(s):  
Yan Zhang ◽  
Bisai Li ◽  
Bin Tang ◽  
Zeen Yao ◽  
Xiongjie Zhang ◽  
...  

CrystEngComm ◽  
2020 ◽  
Vol 22 (21) ◽  
pp. 3588-3597 ◽  
Author(s):  
Xiangchen Zhao ◽  
Guiling Niu ◽  
Hongxun Yang ◽  
Jiaojiao Ma ◽  
Mengfei Sun ◽  
...  

New MIL-88A@polyoxometalates microrods have been constructed via a simple one-step hydrothermal method, exhibiting the improved lithium storage capacity, rate performance and cycling stability.


2019 ◽  
Vol 3 (9) ◽  
pp. 2361-2365 ◽  
Author(s):  
Xiaoyong Dou ◽  
Ming Chen ◽  
Jiantao Zai ◽  
Zhen De ◽  
Boxu Dong ◽  
...  

Silicon (Si) has been regarded as a promising next-generation anode material to replace carbon-based materials for lithium ion batteries (LIBs).


2020 ◽  
Vol 7 (14) ◽  
pp. 2651-2659 ◽  
Author(s):  
Shuting Sun ◽  
Ruhong Li ◽  
Wenhui Wang ◽  
Deying Mu ◽  
Jianchao Liu ◽  
...  

MWCNTs/Sn4P3@C with a coaxial cable-like structure demonstrates remarkable cycling stability and rate capability.


2019 ◽  
Vol 7 (38) ◽  
pp. 21766-21773 ◽  
Author(s):  
Shixue Zhang ◽  
Huan Liu ◽  
Bin Cao ◽  
Qizhen Zhu ◽  
Peng Zhang ◽  
...  

A Ti3C2Tx/CNTs@P nanohybrid with stable Ti–O–P bonds is simply fabricated, which exhibits high capacity, excellent long-term cycling stability and superior rate capability as an anode for lithium ion batteries.


2017 ◽  
Vol 5 (22) ◽  
pp. 11197-11203 ◽  
Author(s):  
Tong Shen ◽  
Xin-hui Xia ◽  
Dong Xie ◽  
Zhu-jun Yao ◽  
Yu Zhong ◽  
...  

Pomegranate-structured Si/C mesoporous microspheres are fabricated by a facile one-step hydrothermal method with high cycling stability and superior rate capacity.


2015 ◽  
Vol 3 (5) ◽  
pp. 2090-2096 ◽  
Author(s):  
Xun Wen ◽  
Xiaolin Wei ◽  
Liwen Yang ◽  
Pei Kang Shen

A novel composite of reduced graphene oxide (RGO) and FeS2 microparticles self-assembled from small size cubes as a high-performance anode material for lithium-ion batteries (LIBs) has been prepared via a facile one-pot hydrothermal method.


RSC Advances ◽  
2016 ◽  
Vol 6 (39) ◽  
pp. 32462-32466 ◽  
Author(s):  
Haihua Zhao ◽  
Wen Qi ◽  
Xuan Li ◽  
Hong Zeng ◽  
Ying Wu ◽  
...  

Alloy anodes for Li-ion batteries (LIBs) have attracted great interest due to their high capacity.


2020 ◽  
Vol 8 (14) ◽  
pp. 6539-6545
Author(s):  
Jian Zhang ◽  
Qing Yin ◽  
Jianeng Luo ◽  
Jingbin Han ◽  
Lirong Zheng ◽  
...  

NiFe saponite was discovered for the first time as a new anode material for high-performance lithium-ion batteries, delivering a high capacity of 646 mA h g−1 after 1000 cycles with a charge/discharge density of 500 mA g−1.


Sign in / Sign up

Export Citation Format

Share Document