Tungsten-doped Ni–Co phosphides with multiple catalytic sites as efficient electrocatalysts for overall water splitting

2019 ◽  
Vol 7 (28) ◽  
pp. 16859-16866 ◽  
Author(s):  
Shan-Shan Lu ◽  
Li-Ming Zhang ◽  
Yi-Wen Dong ◽  
Jia-Qi Zhang ◽  
Xin-Tong Yan ◽  
...  

The design of electrocatalysts including precious and nonprecious metals for the hydrogen evolution reaction (HER) in alkaline media remains challenging due to the sluggish reaction kinetics caused by the additional water dissociation step.

2020 ◽  
Author(s):  
Hong Liu ◽  
Jian-Jun Wang ◽  
Li-Wen Jiang ◽  
Yuan Huang ◽  
Bing Bing Chen ◽  
...  

<p>Hydrogen production via alkaline water electrolysis is of significant interest. However, the additional water dissociation step makes the Volmer step a relatively more sluggish kinetics and consequently leads to a slower reaction rate than that in acidic solution. Herein, we demonstrate an effective strategy that Co(OH)<sub>2</sub> can promote the Volmer process by accelerating water dissociation and enhance the electrocatalytic performance of CoP toward alkaline hydrogen evolution reaction. The Co(OH)<sub>2</sub> nanoplates are electrochemically induced in-situ generated to form a nanotree-like structure with porous CoP nanowires, endowing the hybrid electrocatalyst with superior charge transportation, more exposed active sites, and enhanced reaction kinetics. This strategy may be extended to <a></a><a>other phosphides and chalcogenides </a>and provide insight into the design and fabrication of efficient alkaline HER catalysts.</p>


2020 ◽  
Author(s):  
Hong Liu ◽  
Jian-Jun Wang ◽  
Li-Wen Jiang ◽  
Yuan Huang ◽  
Bing Bing Chen ◽  
...  

<p>Hydrogen production via alkaline water electrolysis is of significant interest. However, the additional water dissociation step makes the Volmer step a relatively more sluggish kinetics and consequently leads to a slower reaction rate than that in acidic solution. Herein, we demonstrate an effective strategy that Co(OH)<sub>2</sub> can promote the Volmer process by accelerating water dissociation and enhance the electrocatalytic performance of CoP toward alkaline hydrogen evolution reaction. The Co(OH)<sub>2</sub> nanoplates are electrochemically induced in-situ generated to form a nanotree-like structure with porous CoP nanowires, endowing the hybrid electrocatalyst with superior charge transportation, more exposed active sites, and enhanced reaction kinetics. This strategy may be extended to <a></a><a>other phosphides and chalcogenides </a>and provide insight into the design and fabrication of efficient alkaline HER catalysts.</p>


Author(s):  
Ziyang Wu ◽  
Jun Mei ◽  
Qiong Liu ◽  
Sen Wang ◽  
Wei Li ◽  
...  

Hydrogen evolution from electrochemical water splitting under alkaline conditions is an ongoing challenge for the requirement of a simultaneous balance to be achieved between the water dissociation step and the...


2020 ◽  
Vol 4 (4) ◽  
pp. 1654-1664 ◽  
Author(s):  
Caiyun Wu ◽  
Yunmei Du ◽  
Yunlei Fu ◽  
Di Feng ◽  
Hui Li ◽  
...  

In this study, a composite of Mo, Co co-doped NiS bulks grown on an Ni foam (Mo,Co-NiS/NF) was synthesized as a bi-functional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using a simple method.


RSC Advances ◽  
2017 ◽  
Vol 7 (73) ◽  
pp. 46286-46296 ◽  
Author(s):  
Nan Zhang ◽  
Junyu Lei ◽  
Jianpeng Xie ◽  
Haiyan Huang ◽  
Ying Yu

A novel 3D hierarchical bifunctional catalytic electrode, MoS2/Ni3S2 nanorod arrays well-aligned on NF exhibited excellent electrocatalytic efficiency for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting.


Nanoscale ◽  
2019 ◽  
Vol 11 (42) ◽  
pp. 20228-20237 ◽  
Author(s):  
Xiaopei Xu ◽  
Haoxiang Xu ◽  
Daojian Cheng

MoS2 edges exhibit good hydrogen evolution reaction (HER) activity but poor oxygen evolution reaction (OER) activity.


RSC Advances ◽  
2019 ◽  
Vol 9 (54) ◽  
pp. 31563-31571 ◽  
Author(s):  
Xiaoyan Hu ◽  
Xuemei Tian ◽  
Ying-Wu Lin ◽  
Zhonghua Wang

Efficient electrocatalytic overall water splitting is achieved with commercially-available and low-cost nickel foam and stainless steel mesh as cathode and anode electrodes.


Sign in / Sign up

Export Citation Format

Share Document