Phase Engineering of Dual Active 2D Bi2O3-based Nanocatalysts for Alkaline Hydrogen Evolution Reaction Electrocatalysis

Author(s):  
Ziyang Wu ◽  
Jun Mei ◽  
Qiong Liu ◽  
Sen Wang ◽  
Wei Li ◽  
...  

Hydrogen evolution from electrochemical water splitting under alkaline conditions is an ongoing challenge for the requirement of a simultaneous balance to be achieved between the water dissociation step and the...

2019 ◽  
Vol 7 (28) ◽  
pp. 16859-16866 ◽  
Author(s):  
Shan-Shan Lu ◽  
Li-Ming Zhang ◽  
Yi-Wen Dong ◽  
Jia-Qi Zhang ◽  
Xin-Tong Yan ◽  
...  

The design of electrocatalysts including precious and nonprecious metals for the hydrogen evolution reaction (HER) in alkaline media remains challenging due to the sluggish reaction kinetics caused by the additional water dissociation step.


2020 ◽  
Author(s):  
Hong Liu ◽  
Jian-Jun Wang ◽  
Li-Wen Jiang ◽  
Yuan Huang ◽  
Bing Bing Chen ◽  
...  

<p>Hydrogen production via alkaline water electrolysis is of significant interest. However, the additional water dissociation step makes the Volmer step a relatively more sluggish kinetics and consequently leads to a slower reaction rate than that in acidic solution. Herein, we demonstrate an effective strategy that Co(OH)<sub>2</sub> can promote the Volmer process by accelerating water dissociation and enhance the electrocatalytic performance of CoP toward alkaline hydrogen evolution reaction. The Co(OH)<sub>2</sub> nanoplates are electrochemically induced in-situ generated to form a nanotree-like structure with porous CoP nanowires, endowing the hybrid electrocatalyst with superior charge transportation, more exposed active sites, and enhanced reaction kinetics. This strategy may be extended to <a></a><a>other phosphides and chalcogenides </a>and provide insight into the design and fabrication of efficient alkaline HER catalysts.</p>


Nanoscale ◽  
2021 ◽  
Author(s):  
Zhuofan Gan ◽  
Chengyong Shu ◽  
Chengwei Deng ◽  
Wei Du ◽  
Bo HUANG ◽  
...  

Electrochemical water splitting is promising method to generate pollution-free and sustainable hydrogen energy. However, the specific activity and durability of noble metal catalysts is the main hindrance to hydrogen evolution...


2020 ◽  
Vol 8 ◽  
Author(s):  
Wenjuan Han ◽  
Minhan Li ◽  
Yuanyuan Ma ◽  
Jianping Yang

Hydrogen has been considered as a promising alternative energy to replace fossil fuels. Electrochemical water splitting, as a green and renewable method for hydrogen production, has been drawing more and more attention. In order to improve hydrogen production efficiency and lower energy consumption, efficient catalysts are required to drive the hydrogen evolution reaction (HER). Cobalt (Co)-based metal-organic frameworks (MOFs) are porous materials with tunable structure, adjustable pores and large specific surface areas, which has attracted great attention in the field of electrocatalysis. In this review, we focus on the recent progress of Co-based metal-organic frameworks and their derivatives, including their compositions, morphologies, architectures and electrochemical performances. The challenges and development prospects related to Co-based metal-organic frameworks as HER electrocatalysts are also discussed, which might provide some insight in electrochemical water splitting for future development.


2020 ◽  
Author(s):  
Hong Liu ◽  
Jian-Jun Wang ◽  
Li-Wen Jiang ◽  
Yuan Huang ◽  
Bing Bing Chen ◽  
...  

<p>Hydrogen production via alkaline water electrolysis is of significant interest. However, the additional water dissociation step makes the Volmer step a relatively more sluggish kinetics and consequently leads to a slower reaction rate than that in acidic solution. Herein, we demonstrate an effective strategy that Co(OH)<sub>2</sub> can promote the Volmer process by accelerating water dissociation and enhance the electrocatalytic performance of CoP toward alkaline hydrogen evolution reaction. The Co(OH)<sub>2</sub> nanoplates are electrochemically induced in-situ generated to form a nanotree-like structure with porous CoP nanowires, endowing the hybrid electrocatalyst with superior charge transportation, more exposed active sites, and enhanced reaction kinetics. This strategy may be extended to <a></a><a>other phosphides and chalcogenides </a>and provide insight into the design and fabrication of efficient alkaline HER catalysts.</p>


Author(s):  
Cong Lin ◽  
Hongbao Li ◽  
Cheng-Zong Yuan ◽  
Zhengkun Yang ◽  
Hanbao Chong ◽  
...  

Efficient catalysts for hydrogen evolution reaction (HER) play a crucial role in electrochemical water splitting, which is one of the most promising approaches to alleviate the problem of energy crisis...


2019 ◽  
Vol 6 (12) ◽  
pp. 3510-3517 ◽  
Author(s):  
Jun Xu ◽  
Yuan Zhu ◽  
Bansui Yu ◽  
Changji Fang ◽  
Junjun Zhang

Metallic 1T-VS2 nanosheets featuring V2+-doping and plenty of mesopores have abundant defects and high conductivity and exhibit superior catalytic activity for electrochemical water splitting.


2016 ◽  
Vol 4 (29) ◽  
pp. 11234-11238 ◽  
Author(s):  
Changqi Sun ◽  
Jingyan Zhang ◽  
Ji Ma ◽  
Peitao Liu ◽  
Daqiang Gao ◽  
...  

Non-Pt-based catalysts are urgently required to produce abundant hydrogen in electrochemical water splitting, in order to make the hydrogen evolution reaction (HER) feasible and energy efficient.


Nanoscale ◽  
2021 ◽  
Author(s):  
Xintong LI ◽  
Yizhe Liu ◽  
Qidi Sun ◽  
Wei-Hsiang Huang ◽  
Zilong Wang ◽  
...  

In electrochemical water splitting process, integrating hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in the same electrolyte with same catalyst is highly beneficial for increasing the energy efficiency...


2016 ◽  
Vol 4 (31) ◽  
pp. 11973-12000 ◽  
Author(s):  
Xiumin Li ◽  
Xiaogang Hao ◽  
Abuliti Abudula ◽  
Guoqing Guan

The fundamentals of water electrolysis, current popular electrocatalysts developed for cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER) in liquid electrolyte water electrolysis are reviewed and discussed.


Sign in / Sign up

Export Citation Format

Share Document