A detailed look at the bonding interactions in the microsolvation of monoatomic cations

2020 ◽  
Vol 22 (23) ◽  
pp. 13049-13061 ◽  
Author(s):  
Natalia Rojas-Valencia ◽  
Sara Gómez ◽  
Doris Guerra ◽  
Albeiro Restrepo

Global and local descriptors of the properties of intermolecular bonding afford a highly complex picture of the bonding interactions responsible for microsolvation of monoatomic cations.

Author(s):  
Jennifer Roldan Carlos ◽  
Mathias Lux ◽  
Xavier Giro-i-Nieto ◽  
Pia Munoz ◽  
Nektarios Anagnostopoulos

2018 ◽  
Author(s):  
Javier Oller ◽  
Patricia Perez ◽  
Paul W. Ayers ◽  
Esteban Vöhringer-Martinez

<div>Global and local descriptors of chemical reactivity can be derived from conceptual density functional theory. Their explicit form, however, depends on how the energy is defined as a function of the number of electrons. Within the existing interpolation models, here, the quadratic and the linear energy model were used to derive global descriptors as the electrophilicity and nucleophilicity (defined as the negative of the ionization potential) and local descriptors employing either the corresponding condensed fukui function in the linear model or the local response of the global descriptor in the quadratic model. The ability of these descriptors to predict the reactivity of molecules with more than one reactive site was first studied on a set of α ,β -unsaturated ketones, where experimental rate constants for the nucleophilic attack is known. With the validated descriptors the reactivity of α ,β -unsaturated carboxylic compounds with different heteroatoms as α ,β -unsaturated thioesters, esters and amides as alternative substrates for the enzymatic CO<sub>2</sub> fixation studied experimentally by Erb <i>et al.</i> was addressed. The carbon dioxide fixation involves the reduction of the neutral α ,β -unsaturated carboxylic compounds by a nucleophilic attack of a hydride anion from NADPH and the following electrophilic attack by carbon dioxide. It was found that condensed values of the linear fukui function within the fragment of molecular response approximation describe best the reactivity of α ,β -unsaturated ketones. For the two relevant processes involved in CO<sub>2</sub> fixation the amides present the largest reactivity in vacuum and in aqueous solution compared to the esters and thioesters and may, therefore, serve as alternative sustrates of carboxylases.</div>


2021 ◽  
Vol 9 ◽  
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

This research presents the outcomes of a computational determination of the chemical reactivity and bioactivity properties of two plant cyclopeptides isolated from Rosaceae through the consideration of Computational Peptidology (CP), a protocol employed previously in the research of similar molecular systems. CP allows the prediction of the global and local descriptors that are the integral foundations of Conceptual Density Functional Theory (CDFT) and which could help in getting in the understanding of the chemical reactivity properties of the two plant cyclopeptides under study, hoping that they could be related to their bioactivity. The methodology based on the Koopmans in DFT (KID) approach and the MN12SX/Def2TZVP/H2O model chemistry has been successfully validated. Various Chemoinformatics tools have been used to improve the process of virtual screening, thus identifying some additional properties of these two plant cyclopeptides connected to their ability to behave as potentially useful drugs. With the further objective of analyzing their bioactivity, the CP protocol is complemented with the estimation of some useful parameters related to pharmacokinetics, their predicted biological targets, and the Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) parameters related to the bioavailability of the two plant cyclopeptides under study are also reported.


2018 ◽  
Author(s):  
Javier Oller ◽  
Patricia Perez ◽  
Paul W. Ayers ◽  
Esteban Vöhringer-Martinez

<div>Global and local descriptors of chemical reactivity can be derived from conceptual density functional theory. Their explicit form, however, depends on how the energy is defined as a function of the number of electrons. Within the existing interpolation models, here, the quadratic and the linear energy model were used to derive global descriptors as the electrophilicity and nucleophilicity (defined as the negative of the ionization potential) and local descriptors employing either the corresponding condensed fukui function in the linear model or the local response of the global descriptor in the quadratic model. The ability of these descriptors to predict the reactivity of molecules with more than one reactive site was first studied on a set of α ,β -unsaturated ketones, where experimental rate constants for the nucleophilic attack is known. With the validated descriptors the reactivity of α ,β -unsaturated carboxylic compounds with different heteroatoms as α ,β -unsaturated thioesters, esters and amides as alternative substrates for the enzymatic CO<sub>2</sub> fixation studied experimentally by Erb <i>et al.</i> was addressed. The carbon dioxide fixation involves the reduction of the neutral α ,β -unsaturated carboxylic compounds by a nucleophilic attack of a hydride anion from NADPH and the following electrophilic attack by carbon dioxide. It was found that condensed values of the linear fukui function within the fragment of molecular response approximation describe best the reactivity of α ,β -unsaturated ketones. For the two relevant processes involved in CO<sub>2</sub> fixation the amides present the largest reactivity in vacuum and in aqueous solution compared to the esters and thioesters and may, therefore, serve as alternative sustrates of carboxylases.</div>


Author(s):  
Sheryl Brahnam ◽  
Loris Nanni ◽  
Shannon McMurtrey ◽  
Alessandra Lumini ◽  
Rick Brattin ◽  
...  

Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments have been developed for neonatal pain diagnosis, most are complex, multifactorial, and geared toward research. The goals of this work are twofold: 1) to develop a new video dataset for automatic neonatal pain detection called iCOPEvid (infant Classification Of Pain Expressions videos), and 2) to present a classification system that sets a challenging comparison performance on this dataset. The iCOPEvid dataset contains 234 videos of 49 neonates experiencing a set of noxious stimuli, a period of rest, and an acute pain stimulus. From these videos 20 s segments are extracted and grouped into two classes: pain (49) and nopain (185), with the nopain video segments handpicked to produce a highly challenging dataset. An ensemble of twelve global and local descriptors with a Bag-of-Features approach is utilized to improve the performance of some new descriptors based on Gaussian of Local Descriptors (GOLD). The basic classifier used in the ensembles is the Support Vector Machine, and decisions are combined by sum rule. These results are compared with standard methods, some deep learning approaches, and 185 human assessments. Our best machine learning methods are shown to outperform the human judges.


2020 ◽  
Vol 85 (9) ◽  
pp. 1163-1174
Author(s):  
Luis Mendoza-Huizar ◽  
Clara Rios-Reyes ◽  
Hector Zuñiga-Trejo

In this work, the chemical reactivity of isoxaflutole (ISOX) and diketonitrile (DKN) was analyzed at the X/6-311++G(2d,2p) (where X = = B3LYP, M06, M06L and ?B97XD) level of theory, in the gas and aqueous phases. The results indicate that DKN, the active metabolite of ISOX, is more stable than isoxaflutole in both phases. ISOX is susceptible to electrophilic and free radical reactions through the isoxazole ring; while the carbonyl group is attacked by nucleophiles. For DKN nucleophilic and free radical attacks are expected on the aromatic ring, while electrophilic attacks are favored on the oxygen atom of the carbonyl groups. The results suggest that the cleavage of the N?O bond in the isoxazole ring is possible through electrophilic and free radical attacks, while electrophilic and free radical attacks will favor substitutions on the carbonyl groups of DKN.


Author(s):  
Jun Yu ◽  
Guochen Xie ◽  
Mengyan Li ◽  
Haonian Xie ◽  
Xinlong Hao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document