DFT insight into axial ligand effects on electronic structure and mechanistic reactivity of oxoiron(iv) porphyrin

2020 ◽  
Vol 22 (21) ◽  
pp. 12173-12179
Author(s):  
Zhifeng Ma ◽  
Naoki Nakatani ◽  
Hiroshi Fujii ◽  
Masahiko Hada

The nature of axial ligand effects is revealed by density functional theory calculations, the ability of axial ligand bound to iron is strong, and the reaction is more reactive.

Author(s):  
Xuexiang Ma ◽  
Aili Feng ◽  
Chengbu Liu ◽  
Dongju Zhang

Density functional theory calculations were performed on a prototype of three-component reactions involving aryl iodides, 2,6-substituted aryl bromides, and acrylates to understand the construction of axially chiral biaryls through the...


1999 ◽  
Vol 103 (48) ◽  
pp. 10627-10631 ◽  
Author(s):  
Christopher V. Grant ◽  
William Cope ◽  
James A. Ball ◽  
Guenter G. Maresch ◽  
Betty J. Gaffney ◽  
...  

2019 ◽  
Vol 21 (21) ◽  
pp. 11168-11174 ◽  
Author(s):  
Wiliam Ferreira da Cunha ◽  
Ramiro Marcelo dos Santos ◽  
Rafael Timóteo de Sousa Júnior ◽  
Renato Batista Santos ◽  
Geraldo Magela e Silva ◽  
...  

The structural and electronic properties of MoS2 sheets doped with carbon line domains are theoretically investigated through density functional theory calculations.


2015 ◽  
Vol 17 (8) ◽  
pp. 5624-5631 ◽  
Author(s):  
Gang Feng ◽  
Gao-Lei Hou ◽  
Hong-Guang Xu ◽  
Zhen Zeng ◽  
Wei-Jun Zheng

Microscopic insight into the dissolution of Li2SO4in water was gained using photoelectron spectroscopy combined with DFT calculations.


Sign in / Sign up

Export Citation Format

Share Document