A systematic computational investigations of water splitting and N2 reduction reaction performances of monolayer MBenes

Author(s):  
Yuwen Cheng ◽  
Jisheng Mo ◽  
Yongtao Li ◽  
Yan Song ◽  
Yumin Zhang

Recently, transition metal borides (MBenes, analogous to MXenes) have been attracted interest due to their potential applications in energy conversion and storage. In this work, we performed density functional theory...

RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 3174-3182
Author(s):  
Siwei Yang ◽  
Chaoyu Zhao ◽  
Ruxin Qu ◽  
Yaxuan Cheng ◽  
Huiling Liu ◽  
...  

In this study, a novel type oxygen reduction reaction (ORR) electrocatalyst is explored using density functional theory (DFT); the catalyst consists of transition metal M and heteroatom N4 co-doped in vacancy fullerene (M–N4–C64, M = Fe, Co, and Ni).


2016 ◽  
Vol 18 (35) ◽  
pp. 24737-24745 ◽  
Author(s):  
Paul C. Jennings ◽  
Steen Lysgaard ◽  
Heine A. Hansen ◽  
Tejs Vegge

Ternary Pt–Au–M (M = 3d transition metal) nanoparticles show reduced OH adsorption energies and improved activity for the oxygen reduction reaction (ORR) compared to pure Pt nanoparticles, as obtained by density functional theory.


2021 ◽  
Author(s):  
Damilola Ologunagba ◽  
Shyam Kattel

Electrochemical nitrogen reduction reaction (ENRR) at ambient conditions is beneficial compared to energy intensive thermochemical Haber-Bosch process for NH3 production. Here, periodic density functional theory (DFT) calculations are carried out...


Author(s):  
Wei Song ◽  
Kun Xie ◽  
Jinlong Wang ◽  
Yongliang Guo ◽  
Chaozheng He ◽  
...  

(a) Screening results of TM@GY for the NRR based on the free energy changes of the first and last hydrogenation steps (ΔG(*N2 → *N2H) and ΔG(*NH2 → *NH3)), respectively. (b) The free energies for H and N2 adsorption on all the TM@GY.


Nanoscale ◽  
2021 ◽  
Author(s):  
Song Lu ◽  
Huong Lan Huynh ◽  
Fengliu lou ◽  
Kun Guo ◽  
Zhixin Yu

Highly efficient, stable and cost-effective electrocatalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) have been pursued for several decades. Herein, by employing density...


2021 ◽  
Vol 7 (2) ◽  
pp. 197-207
Author(s):  
Fengxiang Chen ◽  
Lei Yang

Proton exchange membrane fuel cells (PEMFCs) are vital energy-conversion devices in a hydrogen-fueled economic. In this study, we performed density functional theory (DFT) calculations to study 4e− oxygen reduction reaction process on transition metal embedded in single and double vacancies (SV and DV) in a graphene. We calculated bonding energy and adsorption energy on CoX3 (X = B, C, N, Si, P and S) and CoX4 (X = B, C, N, Si, P and S) embedded in graphene. Our DFT results indicate that formation of CoX3 is unfeasible and the formation of CoX4 is feasible. In addition, the crucial role of ligand atoms near embedded metal atoms is revealed via the molecular orbital theory. Then the Gibbs free energy of CoX4 are calculated and the CoN4, CoS4, and CoP4 are predicted to be active for catalyzing ORR, and these also show ligand atoms’ coordination effect for catalytic activity of central metal. Furthermore, we observed that they have identical rate-determining step (RDS). This work can provide some references for transition atoms catalytic doped in carbon materials.


Sign in / Sign up

Export Citation Format

Share Document