Novel synthetic strategy towards subphthalocyanine-functionalized acetylenic scaffolds via various dibromo-enynes

2020 ◽  
Vol 18 (31) ◽  
pp. 6077-6085
Author(s):  
Line Broløs ◽  
Martin Drøhse Kilde ◽  
Mogens Brøndsted Nielsen

Axial alkynylation of boron subphthalocyanine with dibromo-substituted enynes and enediynes is presented and the convenient use of these compounds for subsequent metal-catalyzed coupling reactions.

2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


Author(s):  
Kenji Tsukamoto ◽  
Koji Takagi ◽  
Keitaro Yamamoto ◽  
Yutaka Ie ◽  
Takanori Fukushima

In order to modulate optoelectronic properties of dithiarubicene (DTR) by the end-functionalization and reveal the structure-properties relationship in detail, we have carried out a set of metal-catalyzed coupling reactions. Electron-withdrawing...


2006 ◽  
Vol 71 (7) ◽  
pp. 2802-2810 ◽  
Author(s):  
Susana López ◽  
Francisco Fernández-Trillo ◽  
Pilar Midón ◽  
Luis Castedo ◽  
Carlos Saá

2015 ◽  
Vol 11 ◽  
pp. 2509-2520 ◽  
Author(s):  
Hang Ren ◽  
Haoyun An ◽  
Paul J Hatala ◽  
William C Stevens ◽  
Jingchao Tao ◽  
...  

A unified synthetic strategy accessing novel 3'-fluorinated purine nucleoside derivatives and their biological evaluation were achieved. Novel 3’-fluorinated analogues were constructed from a common 3’-deoxy-3’-fluororibofuranose intermediate. Employing Suzuki and Stille cross-coupling reactions, fifteen 3’-fluororibose purine nucleosides 1–15 and eight 3’-fluororibose 2-chloro/2-aminopurine nucleosides 16–23 with various substituents at position 6 of the purine ring were efficiently synthesized. Furthermore, 3’-fluorine analogs of natural products nebularine and 6-methylpurine riboside were constructed via our convergent synthetic strategy. Synthesized nucleosides were tested against HT116 (colon cancer) and 143B (osteosarcoma cancer) tumor cell lines. We have demonstrated 3’-fluorine purine nucleoside analogues display potent tumor cell growth inhibition activity at sub- or low micromolar concentration.


2015 ◽  
Vol 112 (39) ◽  
pp. 12026-12029 ◽  
Author(s):  
Yohei Yamashita ◽  
John C. Tellis ◽  
Gary A. Molander

Orthogonal reactivity modes offer substantial opportunities for rapid construction of complex small molecules. However, most strategies for imparting orthogonality to cross-coupling reactions rely on differential protection of reactive sites, greatly reducing both atom and step economies. Reported here is a strategy for orthogonal cross-coupling wherein a mechanistically distinct activation mode for transmetalation of sp3-hybridized organoboron reagents enables C-C bond formation in the presence of various protected and unprotected sp2-hybridized organoborons. This manifold has the potential for broad application, because orthogonality is inherent to the activation mode itself. The diversification potential of this platform is shown in the rapid elaboration of a trifunctional lynchpin through various transition metal-catalyzed processes without nonproductive deprotection or functional group manipulation steps.


Sign in / Sign up

Export Citation Format

Share Document