fungal resistance
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 91)

H-INDEX

33
(FIVE YEARS 3)

Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 182-187
Author(s):  
V. M. Shevchenko ◽  
◽  
N. A. Guts ◽  
A. Ye. Shpak ◽  
E. R. Surovtseva ◽  
...  

It has long been known that materials containing cellulose fibers in their composition are destroyed by molds, microorganisms, actinomycetes, which use cellulose as a carbon source. Different fibrous materials to varying degrees (but always) are affected by molds. It is known that linseed and cotton types of paper are affected by the smallest number of fungi, and sulphate ones by the largest. The most biostable is cotton paper, the composition of which contains chalk in a sufficiently large amount. The observations carried out by the authors showed that the highest biostability (fungal resistance) is characteristic of papers containing chalk and kaolin, the lowest is glued types of paper with a high degree of sizing. Aging of paper with increasing temperature increases the overall susceptibility of all types of paper tested without exception. Obviously, changes in the physical and chemical properties of paper as a result of aging create more favorable conditions for the growth of fungi. It is well known that paper can serve as a medium for the spread of infectious diseases. The authors of the article studied the thermo-physical properties of basalt fiber and investigated the possibility of using it for the manufacture of heat-insulating technical paper.Obtaining materials that are not affected by bacteria, insects and molds (fungicidal,insecticidal) can be solved by using inorganic fibers, which are obtained from almost unlimited natural resources and which have excellent biochemical properties. It should be noted that the concept of "biocidal" paper (material) is collective. It combines species that differ in their ability to kill bacteria (bactericidal), molds (fungicidal), insects (insecticidal). Each of the biocidal types of materials has two or more of these properties.


2021 ◽  
Vol 12 ◽  
Author(s):  
James S. Griffiths ◽  
P. Lewis White ◽  
Aiysha Thompson ◽  
Diogo M. da Fonseca ◽  
Robert J. Pickering ◽  
...  

Invasive Aspergillosis (IA), typically caused by the fungus Aspergillus fumigatus, is a leading cause of morbidity and mortality in immunocompromised patients. IA remains a significant burden in haematology patients, despite improvements in the diagnosis and treatment of Aspergillus infection. Diagnosing IA is challenging, requiring multiple factors to classify patients into possible, probable and proven IA cohorts. Given the low incidence of IA, using negative results as exclusion criteria is optimal. However, frequent false positives and severe IA mortality rates in haematology patients have led to the empirical use of toxic, drug-interactive and often ineffective anti-fungal therapeutics. Improvements in IA diagnosis are needed to reduce unnecessary anti-fungal therapy. Early IA diagnosis is vital for positive patient outcomes; therefore, a pre-emptive approach is required. In this study, we examined the sequence and expression of four C-type Lectin-like receptors (Dectin-1, Dectin-2, Mincle, Mcl) from 42 haematology patients and investigated each patient’s anti-Aspergillus immune response (IL-6, TNF). Correlation analysis revealed novel IA disease risk factors which we used to develop a pre-emptive patient stratification protocol to identify haematopoietic stem cell transplant patients at high and low risk of developing IA. This stratification protocol has the potential to enhance the identification of high-risk patients whilst reducing unnecessary treatment, minimizing the development of anti-fungal resistance, and prioritising primary disease treatment for low-risk patients.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010073
Author(s):  
Rafael W. Bastos ◽  
Luana Rossato ◽  
Gustavo H. Goldman ◽  
Daniel A. Santos

Fungal infections are underestimated threats that affect over 1 billion people, and Candida spp., Cryptococcus spp., and Aspergillus spp. are the 3 most fatal fungi. The treatment of these infections is performed with a limited arsenal of antifungal drugs, and the class of the azoles is the most used. Although these drugs present low toxicity for the host, there is an emergence of therapeutic failure due to azole resistance. Drug resistance normally develops in patients undergoing azole long-term therapy, when the fungus in contact with the drug can adapt and survive. Conversely, several reports have been showing that resistant isolates are also recovered from patients with no prior history of azole therapy, suggesting that other routes might be driving antifungal resistance. Intriguingly, antifungal resistance also happens in the environment since resistant strains have been isolated from plant materials, soil, decomposing matter, and compost, where important human fungal pathogens live. As the resistant fungi can be isolated from the environment, in places where agrochemicals are extensively used in agriculture and wood industry, the hypothesis that fungicides could be driving and selecting resistance mechanism in nature, before the contact of the fungus with the host, has gained more attention. The effects of fungicide exposure on fungal resistance have been extensively studied in Aspergillus fumigatus and less investigated in other human fungal pathogens. Here, we discuss not only classic and recent studies showing that environmental azole exposure selects cross-resistance to medical azoles in A. fumigatus, but also how this phenomenon affects Candida and Cryptococcus, other 2 important human fungal pathogens found in the environment. We also examine data showing that fungicide exposure can select relevant changes in the morphophysiology and virulence of those pathogens, suggesting that its effect goes beyond the cross-resistance.


2021 ◽  
Vol 22 (24) ◽  
pp. 13261
Author(s):  
Pedro V. Martínez-Culebras ◽  
Mónica Gandía ◽  
Sandra Garrigues ◽  
Jose F. Marcos ◽  
Paloma Manzanares

The global challenge to prevent fungal spoilage and mycotoxin contamination on food and feed requires the development of new antifungal strategies. Antimicrobial peptides and proteins (AMPs) with antifungal activity are gaining much interest as natural antifungal compounds due to their properties such as structure diversity and function, antifungal spectrum, mechanism of action, high stability and the availability of biotechnological production methods. Given their multistep mode of action, the development of fungal resistance to AMPs is presumed to be slow or delayed compared to conventional fungicides. Interestingly, AMPs also accomplish important biological functions other than antifungal activity, including anti-mycotoxin biosynthesis activity, which opens novel aspects for their future use in agriculture and food industry to fight mycotoxin contamination. AMPs can reach intracellular targets and exert their activity by mechanisms other than membrane permeabilization. The mechanisms through which AMPs affect mycotoxin production are varied and complex, ranging from oxidative stress to specific inhibition of enzymatic components of mycotoxin biosynthetic pathways. This review presents natural and synthetic antifungal AMPs from different origins which are effective against mycotoxin-producing fungi, and aims at summarizing current knowledge concerning their additional effects on mycotoxin biosynthesis. Antifungal AMPs properties and mechanisms of action are also discussed.


2021 ◽  
Vol 7 (12) ◽  
pp. 1053
Author(s):  
Panpan Zhu ◽  
Shuai Zhang ◽  
Ruolan Li ◽  
Changying Liu ◽  
Wei Fan ◽  
...  

Hypertrophy sorosis scleroteniosis caused by Ciboria shiraiana is the most devastating disease of mulberry fruit. However, few mulberry lines show any resistance to C. shiraiana. An increasing amount of research has shown that host-induced gene silencing (HIGS) is an effective strategy for enhancing plant tolerance to pathogens by silencing genes required for their pathogenicity. In this study, two G protein α subunit genes, CsGPA1 and CsGPA2, were identified from C. shiraiana. Silencing CsGPA1 and CsGPA2 had no effect on hyphal growth but reduced the number of sclerotia and increased the single sclerotium weight. Moreover, silencing CsGpa1 resulted in increased fungal resistance to osmotic and oxidative stresses. Compared with wild-type and empty vector strains, the number of appressoria was clearly lower in CsGPA1-silenced strains. Importantly, infection assays revealed that the virulence of CsGPA1-silenced strains was significantly reduced, which was accompanied by formation of fewer appressoria and decreased expression of several cAMP/PKA- or mitogen-activated protein-kinase-related genes. Additionally, transgenic Nicotiana benthamiana expressing double-stranded RNA targeted to CsGpa1 through the HIGS method significantly improved resistance to C. shiraiana. Our results indicate that CsGpa1 is an important regulator in appressoria formation and the pathogenicity of C. shiraiana. CsGpa1 is an efficient target to improve tolerance to C. shiraiana using HIGS technology.


2021 ◽  
Vol 7 (12) ◽  
pp. 1014
Author(s):  
Marina Valente Navarro ◽  
Yasmin Nascimento de Barros ◽  
Wilson Dias Segura ◽  
Alison Felipe Alencar Chaves ◽  
Grasielle Pereira Jannuzzi ◽  
...  

Dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM), an endemic disease in Latin America with a high incidence in Brazil. This pathogen presents as infective mycelium at 25 °C in the soil, reverting to its pathogenic form when inhaled by the mammalian host (37 °C). Among these dimorphic fungal species, dimorphism regulating histidine kinase (Drk1) plays an essential role in the morphological transition. These kinases are present in bacteria and fungi but absent in mammalian cells and are important virulence and cellular survival regulators. Hence, the purpose of this study was to investigate the role of PbDrk1 in the cell wall modulation of P. brasiliensis. We observed that PbDrk1 participates in fungal resistance to different cell wall-disturbing agents by reducing viability after treatment with iDrk1. To verify the role of PbDRK1 in cell wall morphogenesis, qPCR results showed that samples previously exposed to iDrk1 presented higher expression levels of several genes related to cell wall modulation. One of them was FKS1, a β-glucan synthase that showed a 3.6-fold increase. Furthermore, confocal microscopy analysis and flow cytometry showed higher β-glucan exposure on the cell surface of P. brasiliensis after incubation with iDrk1. Accordingly, through phagocytosis assays, a significantly higher phagocytic index was observed in yeasts treated with iDrk1 than the control group, demonstrating the role of PbDrk1 in cell wall modulation, which then becomes a relevant target to be investigated. In parallel, the immune response profile showed increased levels of proinflammatory cytokines. Finally, our data strongly suggest that PbDrk1 modulates cell wall component expression, among which we can identify β-glucan. Understanding this signalling pathway may be of great value for identifying targets of antifungal molecular activity since HKs are not present in mammals.


2021 ◽  
Author(s):  
Chen-Tran Hsu ◽  
Yu-Hsuan Yuan ◽  
Po-Xing Zheng ◽  
Fu-Hui Wu ◽  
Qiao-Wei Cheng ◽  
...  

Wild tomatoes are important genomic resources for tomato research and breeding. Development of a foreign DNA-free CRISPR-Cas delivery system has potential to mitigate public concern about genetically modified organisms. Here, we established a DNA-free protoplast regeneration and CRISPR-Cas9 genome editing system for Solanum peruvianum, an important resource for tomato introgression breeding. We generated mutants for genes involved in small interfering RNAs (siRNA) biogenesis, RNA-DEPENDENT RNA POLYMERASE 6 (SpRDR6) and SUPPRESSOR OF GENE SILENCING 3 (SpSGS3); pathogen-related peptide precursors, PATHOGENESIS-RELATED PROTEIN-1 (SpPR-1) and PROSYSTEMIN (SpProsys); and fungal resistance (MILDEW RESISTANT LOCUS O, SpMlo1) using diploid or tetraploid protoplasts derived from in vitro-grown shoots. The ploidy level of these regenerants was not affected by PEG-calcium-mediated transfection, CRISPR reagents, or the target genes. By karyotyping and whole genome sequencing analysis, we confirmed that CRISPR-Cas9 editing did not introduce chromosomal changes or unintended genome editing sites. All mutated genes in both diploid and tetraploid regenerants were heritable in the next generation. spsgs3 null T0 regenerants and sprdr6 null T1 progeny had wiry, sterile phenotypes in both diploid and tetraploid lines. The sterility of the spsgs3 null mutant was partially rescued, and fruits were obtained by grafting to wild-type stock and pollination with wild-type pollen. The resulting seeds contained the mutated alleles. Tomato yellow leaf curl virus proliferated at higher levels in spsgs3 and sprdr6 mutants than in the wild type. Therefore, this protoplast regeneration technique should greatly facilitate tomato polyploidization and enable the use of CRISPR-Cas for S. peruvianum domestication and tomato breeding.


2021 ◽  
Vol 891 (1) ◽  
pp. 012009
Author(s):  
T Priadi ◽  
W Suhailiyah ◽  
L Karlinasari

Abstract Fast growing woods from plantations forest generally have low quality and require improvement to resist degrading organisms. This study aimed to evaluate the resistance of heat-modified sengon, jabon, mangium, and short rotation teak woods against decay fungi. Heat treatment was applied at two different temperatures (150 °C and 180 °C) and for three different times (0, 2, and 6 hours). The decay resistance test used white rot (Schizophyllum commune Fr) and brown rot (Tyromyces palustris) fungibased on modified SNI 01-7207-2014 standard. The chemical analysis of heat-modified wood used Gas Chromatography-Mass Spectrometry. The results showed that the white rot fungal resistance was significantly affected by the interaction of wood species, temperature and period of heating, while the brown rot fungal resistance was significantly affected by the interaction of wood species and heating temperature. Heating at 180 °C for 6 hours increased the fungal resistance of sengon, jabon and mangium woods. However, the fungal resistance of teak wood improved by heating at 150 °C for 6 hours. The durability improvement of the heat-modified woods were suspected due to the appearance or increase of antifungal substances such as benzoic acid, sinapaldehyde, vanillin and 2-methylantraquinone.


2021 ◽  
Vol 7 (11) ◽  
pp. 900
Author(s):  
Nawal Abd El-Baky ◽  
Amro Abd Al Fattah Amara

Recent research demonstrates that the number of virulent phytopathogenic fungi continually grows, which leads to significant economic losses worldwide. Various procedures are currently available for the rapid detection and control of phytopathogenic fungi. Since 1940, chemical and synthetic fungicides were typically used to control phytopathogenic fungi. However, the substantial increase in development of fungal resistance to these fungicides in addition to negative effects caused by synthetic fungicides on the health of animals, human beings, and the environment results in the exploration of various new approaches and green strategies of fungal control by scientists from all over the world. In this review, the development of new approaches for controlling fungal diseases in plants is discussed. We argue that an effort should be made to bring these recent technologies to the farmer level.


Sign in / Sign up

Export Citation Format

Share Document