scholarly journals Optimized Ni1−xAlxO hole transport layer for silicon solar cells

RSC Advances ◽  
2020 ◽  
Vol 10 (38) ◽  
pp. 22377-22386
Author(s):  
S. Halilov ◽  
M. L. Belayneh ◽  
M. A. Hossain ◽  
A. A. Abdallah ◽  
B. Hoex ◽  
...  

NiO alloyed with aluminum, Ni1−xAlxO, is analyzed in terms of its stoichiometry, electronic and transport properties, as well as interfacial band alignment with Si to evaluate its potential use as a hole transport layer (HTL) in p–i–n type solar cells.

Author(s):  
Samed Halilov ◽  
Merid Belayneh ◽  
Md Anower Hossain ◽  
Bram Hoex ◽  
Amir Abdallah ◽  
...  

2020 ◽  
Vol 860 ◽  
pp. 9-14
Author(s):  
Ayi Bahtiar ◽  
Rizka Yazibarahmah ◽  
Annisa Aprilia ◽  
Darmawan Hidayat

Perovskite solar cells have a great potential as competitor of silicon solar cells which have been dominated the market of solar cells since last decade, due to a tremendous improvement of their power conversion efficiency (PCE). Recently, a PCE of perovskite solar cells above 23% have been obtained. Moreover, perovskite solar cells can be fabricated using simple solution methods, therefore, the whole cost production of solar cells is less than half of silicon solar cells. However, their low stability in thermal and high humidity hinder them to be produced and commercially used to replace silicon solar cells. Many efforts have been done to improve both PCE and stability, including mixed inorganic-organic cations, mixed halide anions, improvement of perovskite morphology or crystallinity and using small molecules for passivation of defect in perovskite. In this paper, we used mixed cesium-methylammonium to improve both PCE and stability of perovskite solar cells. Cesium was used due to its smaller ionic radius than methylammonium (MA) ions, therefore, the crystal structure of perovskite is not distorted. Moreover, perovskite cesium-lead-bromide (CsPbBr3) are more stable than that of MAPbBr3 and doping cesium increased light absorption in perovskite MAPbBr3. We studied the effect of mixed cesium-MA on the PCE and stability at high humidity (>70%). The percentage of cesium was varied at 0%, 5%, 10%, 15% and 20%. The perovskite solar cells have monolithic hole-transport layer free (HTL-free) structure using carbon as electrode. This structure was used due simple and low cost in processing of solar cells. Our results showed that by replacing 10% of MA ions with Cs ions, both PCE and stability at high humidity are improved.


2021 ◽  
Author(s):  
F Ayala-Mato ◽  
O Vigil-Galán ◽  
Maykel Courel ◽  
M. M. Nicolás-Marín

Abstract Antimony Sulfide (Sb2Se3) Solar Cells are considered a promising emerging photovoltaic devices technology. However, the best reported experimental efficiency (9.2%) is well below the theoretical limit of 30%. In this research is demonstrated, by numerical simulation, that using different buffer or electron transport layers (ETL) and device structures (n-p or n-i-p) can significantly increase the solar cell performance. The study is based on two underlying considerations: the use of inorganic materials to facilitate the manufacturing process and the analysis of the simulation parameters that adjust to the experimental conditions in which the cells can be processed. In the n-p structures, the use of single layers and bilayers as ETL was evaluated and the possible mechanism that explain the electrical parameters of the solar cell were discussed. Especial attention was made in the role of interfacial state density and band alignment in the ETL/Sb2Se3 interface. In addition, the n-i-p structure was studied by adding a hole transport layer (HTL). An improvement in open circuit voltage (Voc) is observed compared with n-p structure. Finally, the behavior of Voc and efficiency vs thickness of the ETL and Sb2Se3 layers was analyzed. The results show that using alternative ETLs a significant improve in Voc and efficiency could be achieved for n-p and n-i-p structures. After thickness optimization and taking account a moderate interface defect density, values of Voc and efficiency higher than 600 mV and 15 % were respectively obtained.


Sign in / Sign up

Export Citation Format

Share Document