All-solid-state Li-metal batteries: role of blending PTFE with PEO and LiTFSI salt as a composite electrolyte with enhanced thermal stability

2020 ◽  
Vol 4 (5) ◽  
pp. 2229-2235 ◽  
Author(s):  
Deep A. Jokhakar ◽  
Dhanya Puthusseri ◽  
Palanisamy Manikandan ◽  
Zheng Li ◽  
Jooho Moon ◽  
...  

Enhancing the ionic conductivity and thermal stability of solid electrolytes is crucial for the development of all-solid-state batteries.

2021 ◽  
Vol 8 ◽  
Author(s):  
Qiongyu Zhou ◽  
Songli Liu ◽  
Shiju Zhang ◽  
Yong Che ◽  
Li-Hua Gan

Compared with the fagile ceramic solid electrolyte, Li-ion conducting polymer electrolytes are flexible and have better contact with electrodes. However, the ionic conductivity of the polymer electrolytes is usually limited because of the slow segment motion of the polymer. In this work, we introduce porous Co3O4 cuboids to Poly (Ethylene Oxide)-based electrolyte (PEO) to investigate the influence of these cuboids on the ionic conductivity of the composite electrolyte and the performance of the all-solid-state batteries. The experiment results showed the porous cuboid Co3O4 fillers not only break the order motion of segments of the polymer to increase the amorphous phase amount, but also build Li+ continuous migration pathway along the Co3O4 surface by the Lewis acid-base interaction. The Li+ conductivity of the composite polymer electrolyte reaches 1.6 × 10−4 S cm−1 at 30°C. The good compatibility of the composite polymer electrolyte to Li metal anode and LiFePO4 cathode ensures good rate performance and long cycle life when applying in an all-solid-state LiFePO4 battery. This strategy points out the direction for developing the high-conducting composite polymer electrolytes for all-solid-state batteries.


Author(s):  
Donggun Lee ◽  
Kern-Ho Park ◽  
So Yeun Kim ◽  
Jae Yup Jung ◽  
Wonrak Lee ◽  
...  

All-solid-state batteries (ASSBs) with inorganic solid electrolytes (SEs) have received much attention as future energy storage systems owing to their high energy densities and excellent safety. Sulfide-based SEs are considered...


Author(s):  
Sudeshna Sen ◽  
Enrico Trevisanello ◽  
Elard Niemöller ◽  
Bing-Xuan Shi ◽  
Fabian Simon ◽  
...  

Solid-state batteries have gained increasing attention with the discovery of new inorganic solid electrolytes, some of which rival the ionic conductivity of liquid electrolytes. With the additional benefit of being...


RSC Advances ◽  
2020 ◽  
Vol 10 (38) ◽  
pp. 22304-22310
Author(s):  
Kazuhiro Hikima ◽  
Nguyen Huu Huy Phuc ◽  
Hirofumi Tsukasaki ◽  
Shigeo Mori ◽  
Hiroyuki Muto ◽  
...  

The performances of next generation all-solid-state batteries might be improved by using multi-valent cation doped Li6PS5Cl solid electrolytes.


2019 ◽  
Vol 92 (11) ◽  
pp. 430-434
Author(s):  
Akitoshi HAYASHI ◽  
Atsushi SAKUDA ◽  
Masahiro TATSUMISAGO

2019 ◽  
Author(s):  
Xiaohan Wu ◽  
Juliette Billaud ◽  
Iwan Jerjen ◽  
Federica Marone ◽  
Yuya Ishihara ◽  
...  

<div> <div> <div> <p>All-solid-state batteries are considered as attractive options for next-generation energy storage owing to the favourable properties (unit transference number and thermal stabilities) of solid electrolytes. However, there are also serious concerns about mechanical deformation of solid electrolytes leading to the degradation of the battery performance. Therefore, understanding the mechanism underlying the electro-mechanical properties in SSBs are essentially important. Here, we show three-dimensional and time-resolved measurements of an all-solid-state cell using synchrotron radiation x-ray tomographic microscopy. We could clearly observe the gradient of the electrochemical reaction and the morphological evolution in the composite layer. Volume expansion/compression of the active material (Sn) was strongly oriented along the thickness of the electrode. While this results in significant deformation (cracking) in the solid electrolyte region, we also find organized cracking patterns depending on the particle size and their arrangements. This study based on operando visualization therefore opens the door towards rational design of particles and electrode morphology for all-solid-state batteries. </p> </div> </div> </div>


Nanoscale ◽  
2021 ◽  
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

As flexible all-solid-state batteries are highly safe and lightweight, they can be considered as candidates for wearable energy sources. However, their performance needs to be first improved, which can be...


Author(s):  
Diego Holanda Pereira de Souza ◽  
Kasper T. Møller ◽  
Stephen A. Moggach ◽  
Terry D Humphries ◽  
Anita D’Angelo ◽  
...  

Metal boron-hydrogen compounds are considered as promising solid electrolyte candidates for the development of all-solid-state batteries (ASSB), owing to the high ionic conductivity exhibited by closo- and nido-boranes. In this...


Sign in / Sign up

Export Citation Format

Share Document