Effects of generation number, spacer length and temperature on the structure and intramolecular dynamics of siloxane dendrimer melts: molecular dynamics simulations

Soft Matter ◽  
2020 ◽  
Vol 16 (15) ◽  
pp. 3792-3805
Author(s):  
Andrey O. Kurbatov ◽  
Nikolay K. Balabaev ◽  
Mikhail A. Mazo ◽  
Elena Yu. Kramarenko

The structure and properties of two homologous series of polysiloxane dendrimer melts are studied by extensive atomistic molecular dynamics simulations.

Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 838 ◽  
Author(s):  
Andrey Kurbatov ◽  
Nikolay Balabaev ◽  
Mikhail Mazo ◽  
Elena Kramarenko

A comparative analysis of intramolecular dynamics of four types of isolated dendrimers from the fourth to the seventh generations belonging to the siloxane and carbosilane families, differing in spacer length, core functionality, and the type of chemical bonds, has been performed via atomic molecular dynamics simulations. The average radial and angular positions of all Si branching atoms of various topological layers within the dendrimer interior, as well as their variations, have been calculated, and the distributions of the relaxation times of their radial and angular motions have been found. It has been shown that the dendrons of all the dendrimers elongate from the center and decrease in a solid angle with an increasing generation number. The characteristic relaxation times of both angular and radial motions of Si atoms are of the order of a few nanoseconds, and they increase with an increasing generation number and decrease with temperature, with the angular relaxation times being larger than the radial ones. The relaxation times in the carbosilanes are larger than those in the siloxanes. The rotational angle dynamics of the carbosilane dendrimers show that the chain bending is mainly realized via trans-gauche transitions in the Si branching bonds.


2001 ◽  
Vol 115 (6) ◽  
pp. 2831-2840 ◽  
Author(s):  
Jaeeon Chang ◽  
Jie Han ◽  
Liu Yang ◽  
Richard L. Jaffe ◽  
Do Y. Yoon

Sign in / Sign up

Export Citation Format

Share Document