Two-dimensional materials as novel co-catalysts for efficient solar-driven hydrogen production

2020 ◽  
Vol 8 (44) ◽  
pp. 23202-23230
Author(s):  
Rui Tong ◽  
Kar Wei Ng ◽  
Xina Wang ◽  
Shuangpeng Wang ◽  
Xuesen Wang ◽  
...  

Electrocatalysts with high HER activity can be used as co-catalysts to improve the P-HER performance of photocatalysts.

2017 ◽  
Vol 53 (2) ◽  
pp. 380-383 ◽  
Author(s):  
I-Wen Peter Chen ◽  
Yu-Xiang Chen ◽  
Chien-Wei Wu ◽  
Chun-Chien Chiu ◽  
Yu-Chieh Hsieh

Creating efficient hydrogen production properties from the macroscopic assembly of two-dimensional materials is still an unaccomplished goal.


2019 ◽  
Vol 12 (1) ◽  
pp. 59-95 ◽  
Author(s):  
Monireh Faraji ◽  
Mahdieh Yousefi ◽  
Samira Yousefzadeh ◽  
Mohammad Zirak ◽  
Naimeh Naseri ◽  
...  

Hydrogen production via solar water splitting can be enhanced by combining semiconductors with various 2-dimensional materials.


2018 ◽  
Author(s):  
Penny Perlepe ◽  
Rodolphe Clérac ◽  
Itziar Oyarzabal ◽  
Corine Mathonière

Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


ACS Nano ◽  
2021 ◽  
Vol 15 (4) ◽  
pp. 7155-7167
Author(s):  
Alireza Taghizadeh ◽  
Kristian S. Thygesen ◽  
Thomas G. Pedersen

Sign in / Sign up

Export Citation Format

Share Document