scholarly journals Two-Dimensional Materials with Giant Optical Nonlinearities near the Theoretical Upper Limit

ACS Nano ◽  
2021 ◽  
Vol 15 (4) ◽  
pp. 7155-7167
Author(s):  
Alireza Taghizadeh ◽  
Kristian S. Thygesen ◽  
Thomas G. Pedersen
2018 ◽  
Author(s):  
Penny Perlepe ◽  
Rodolphe Clérac ◽  
Itziar Oyarzabal ◽  
Corine Mathonière

Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


2020 ◽  
Vol 4 (1) ◽  
pp. 9
Author(s):  
Vasilios Karanikolas ◽  
Ioannis Thanopulos ◽  
Emmanuel Paspalakis

Two-dimensional materials allow for extreme light confinement, thus becoming important candidates for all optical application platforms.  [...]


Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2315-2340 ◽  
Author(s):  
Junli Wang ◽  
Xiaoli Wang ◽  
Jingjing Lei ◽  
Mengyuan Ma ◽  
Cong Wang ◽  
...  

AbstractDue to the unique properties of two-dimensional (2D) materials, much attention has been paid to the exploration and application of 2D materials. In this review, we focus on the application of 2D materials in mode-locked fiber lasers. We summarize the synthesis methods for 2D materials, fiber integration with 2D materials and 2D materials based saturable absorbers. We discuss the performance of the diverse mode-locked fiber lasers in the typical operating wavelength such as 1, 1.5, 2 and 3 μm. Finally, a summary and outlook of the further applications of the new materials in mode-locked fiber lasers are presented.


Sign in / Sign up

Export Citation Format

Share Document