scholarly journals Rational design and controllable synthesis of polymer aerogel-based single-atom catalysts with high loading

2021 ◽  
Author(s):  
Zhi Chen ◽  
Shu Zhang ◽  
Jian Yang ◽  
Cheng Chen ◽  
Yaochen Song ◽  
...  

Recently, single-atom catalysts (SACs) are of great interest in the field of catalysis.

2021 ◽  
Vol 42 (5) ◽  
pp. 753-761
Author(s):  
Jun-Sheng Jiang ◽  
He-Lei Wei ◽  
Ai-Dong Tan ◽  
Rui Si ◽  
Wei-De Zhang ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yingjie Yang ◽  
Yanhui Yu ◽  
Jing Li ◽  
Qingrong Chen ◽  
Yanlian Du ◽  
...  

AbstractThe investigation of highly effective, durable, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is a prerequisite for the upcoming hydrogen energy society. To establish a new hydrogen energy system and gradually replace the traditional fossil-based energy, electrochemical water-splitting is considered the most promising, environmentally friendly, and efficient way to produce pure hydrogen. Compared with the commonly used platinum (Pt)-based catalysts, ruthenium (Ru) is expected to be a good alternative because of its similar hydrogen bonding energy, lower water decomposition barrier, and considerably lower price. Analyzing and revealing the HER mechanisms, as well as identifying a rational design of Ru-based HER catalysts with desirable activity and stability is indispensable. In this review, the research progress on HER electrocatalysts and the relevant describing parameters for HER performance are briefly introduced. Moreover, four major strategies to improve the performance of Ru-based electrocatalysts, including electronic effect modulation, support engineering, structure design, and maximum utilization (single atom) are discussed. Finally, the challenges, solutions and prospects are highlighted to prompt the practical applications of Ru-based electrocatalysts for HER.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panlong Zhai ◽  
Mingyue Xia ◽  
Yunzhen Wu ◽  
Guanghui Zhang ◽  
Junfeng Gao ◽  
...  

AbstractRational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm−2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.


2020 ◽  
Vol 7 (23) ◽  
pp. 4661-4668
Author(s):  
Rui-Li Peng ◽  
Jia-Luo Li ◽  
Xiao-Ning Wang ◽  
Yu-Meng Zhao ◽  
Bao Li ◽  
...  

A facile and controllable synthesis strategy for bimetallic electrocatalysts for the OER from a two-dimensional iron-based metal–organic framework precursor has been reported, in which the Fe/Ni type exhibits the best efficiency and conversion.


2021 ◽  
Vol 16 (18) ◽  
pp. 2622-2625
Author(s):  
Yang Zhou ◽  
Wei Xi ◽  
Zixin Xie ◽  
Zhixin You ◽  
Xunzhu Jiang ◽  
...  

2019 ◽  
Vol 9 (10) ◽  
pp. 1803689 ◽  
Author(s):  
Md Delowar Hossain ◽  
Zhenjing Liu ◽  
Minghao Zhuang ◽  
Xingxu Yan ◽  
Gui-Liang Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document