emerging contaminants
Recently Published Documents


TOTAL DOCUMENTS

1255
(FIVE YEARS 627)

H-INDEX

80
(FIVE YEARS 19)

2022 ◽  
Vol 118 ◽  
pp. 87-100
Author(s):  
Zeqing Long ◽  
Hui Song ◽  
Guangming Zhang ◽  
Jingsi Gao ◽  
Jia Zhu

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Prasanth Bhatt ◽  
Swamynathan Ganesan ◽  
Infant Santhose ◽  
Thirumurugan Durairaj

Abstract Phytoremediation is a process which effectively uses plants as a tool to remove, detoxify or immobilize contaminants. It has been an eco-friendly and cost-effective technique to clean contaminated environments. The contaminants from various sources have caused an irreversible damage to all the biotic factors in the biosphere. Bioremediation has become an indispensable strategy in reclaiming or rehabilitating the environment that was damaged by the contaminants. The process of bioremediation has been extensively used for the past few decades to neutralize toxic contaminants, but the results have not been satisfactory due to the lack of cost-effectiveness, production of byproducts that are toxic and requirement of large landscape. Phytoremediation helps in treating chemical pollutants on two broad categories namely, emerging organic pollutants (EOPs) and emerging inorganic pollutants (EIOPs) under in situ conditions. The EOPs are produced from pharmaceutical, chemical and synthetic polymer industries, which have potential to pollute water and soil environments. Similarly, EIOPs are generated during mining operations, transportations and industries involved in urban development. Among the EIOPs, it has been noticed that there is pollution due to heavy metals, radioactive waste production and electronic waste in urban centers. Moreover, in recent times phytoremediation has been recognized as a feasible method to treat biological contaminants. Since remediation of soil and water is very important to preserve natural habitats and ecosystems, it is necessary to devise new strategies in using plants as a tool for remediation. In this review, we focus on recent advancements in phytoremediation strategies that could be utilized to mitigate the adverse effects of emerging contaminants without affecting the environment.


2022 ◽  
Author(s):  
Alberto Celma ◽  
Richard Bade ◽  
Juan V. Sancho ◽  
Félix Hernández ◽  
Melissa Humpries ◽  
...  

Abstract Ultra-high performance liquid chromatography coupled to ion mobility separation and high-resolution mass spectrometry instruments have proven very valuable for screening of emerging contaminants in the aquatic environment. However, when applying suspect or non-target approaches (i.e. when no reference standards are available) there is no information on retention time (RT) and collision cross section (CCS) values to facilitate identification. In-silico prediction tools of RT and CCS can therefore be of great utility to decrease the number of candidates to investigate. In this work, Multiple Adaptive Regression Splines (MARS) was evaluated for the prediction of both RT and CCS. MARS prediction models were developed and validated using a database of 477 protonated molecules, 169 deprotonated molecules and 249 sodium adducts. Multivariate and univariate models were evaluated showing a better fit for univariate models to the empirical data. The RT model (R2=0.855) showed a deviation between predicted and empirical data of ± 2.32 min (95% confidence intervals). The deviation observed for CCS data of protonated molecules using CCSH model (R2=0.966) was ± 4.05% with 95% confidence intervals. The CCSH model was also tested for the prediction of deprotonated molecules resulting in deviations below ± 5.86% for the 95% of the cases. Finally, a third model was developed for sodium adducts (CCSNa, R2=0.954) with deviation below ± 5.25% for the 95% of the cases. The developed models have been incorporated in an open access and user-friendly online platform which represents a great advantage for third-party research laboratories for predicting both RT and CCS data.


2022 ◽  
Vol 9 ◽  
Author(s):  
Marcelo Pedrosa Gomes ◽  
Júlio César Moreira Brito ◽  
Fabio Vieira ◽  
Rafael Shinji Akiyama Kitamura ◽  
Philippe Juneau

This study investigated the occurrence and risk assessment of ten pharmaceutical products and two herbicides in the water of rivers from the Doce river watershed (Brazil). Of the 12 chemicals studied, ten (acyclovir, amoxicillin, azithromycin, ciprofloxacin, enrofloxacin, fluoxetine, erythromycin, sulfadiazine, sulfamethoxazole, glyphosate and aminomethylphosphonic acid) had a 100% detection rate. In general, total concentrations of all target drugs ranged from 4.6 to 14.5 μg L−1, with fluoroquinolones and sulfonamides being the most representative classes of pharmaceutical products. Herbicides were found at concentrations at least ten times higher than those of the individual pharmaceutical products and represented the major class of contaminants in the samples. Most of the contaminants studied were above concentrations that pose an ecotoxicological risk to aquatic biota. Urban wastewater must be the main source of contaminants in waterbodies. Our results show that, in addition to the study of metal in water (currently being conducted after the Fundão dam breach), there is an urgent need to monitor emerging contaminant in waters from Doce river watershed rivers, as some chemicals pose environmental risks to aquatic life and humans due to the use of surface water for drinking and domestic purposes by the local population. Special attention should be given to glyphosate, aminomethylphosaphonic acid, and to ciprofloxacin and enrofloxacin (whose concentrations are above predicted levels that induce resistance selection).


Author(s):  
Nadia Morin-Crini ◽  
Eric Lichtfouse ◽  
Marc Fourmentin ◽  
Ana Rita Lado Ribeiro ◽  
Constantinos Noutsopoulos ◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 725
Author(s):  
Francesco Izzo ◽  
Alessio Langella ◽  
Bruno de Gennaro ◽  
Chiara Germinario ◽  
Celestino Grifa ◽  
...  

The technological performance of a chabazite-rich rock belonging to the Campanian Ignimbrite formation, outcropping in the nearby of San Mango sul Calore (southern Italy), has been evaluated for the sorption and release of ibuprofen sodium salt after a surface modification of the starting geomaterial using two different chlorinated surfactants. Equilibrium sorption isotherms and in vitro loading tests demonstrated that the maximum sorption capacities of this geomaterial reach up to 24.5 and 13.5 mg/g, respectively, for zeolite modified with cetylpyridinium and benzalkonium. These results, obtained by non-linear mathematical modeling of the experimental curves, are definitely compatible with the concentrations of the most common non-steroidal anti-inflammatory drugs (such as ibuprofen) in wastewaters, which have been recently considered as contaminants of emerging concern. This investigation also encourages a new possible sustainable exploitation of the lithified yellow facies of Campanian Ignimbrite, although future developments will be focused on using more stable and eco-friendlier two-tailed surfactants.


2022 ◽  
pp. 397-407
Author(s):  
Sangeetha Gandhi Sivasubramaniyan ◽  
Senthilkumar Kandasamy ◽  
Naveen kumar Manickam

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
G. Prasannamedha ◽  
P. Senthil Kumar

Porous carbon spheres were fabricated from sugarcane bagasse using a sustainable hydrothermal carbonization process followed by alkali impregnation inert atmosphere activation. Developed spheres were technically analysed for their chemical science, structural morphology, texture, porosity with respect to size distribution, and thermal degradation. Spheres are functionally enriched with oxygenated groups showing amorphous nature portraying as a smooth surface. After activation, intensity of functional groups is reduced due to reduction reaction by KOH thereby yielding highly rich porous carbon. The active surface area developed on spheres is 111 m2 g-1 holding pores that are mesoporous in nature. Resistance to thermal exposure using TGA showed that decomposition of hemicelluloses followed by cellulose yielded aromatized carbon-rich skeleton through thermal degradation of carboxyl and hydroxyl groups. Developed carbon was found to be effective in removing Ciprofloxacin Hydrochloride from water with maximum adsorption capacity of 110.008 mg g-1. Mechanistic removal followed pseudo-second-order kinetics along with Freundlich mode of adsorption. The presence of carboxylic and hydroxyl groups in porous carbon favoured elimination of CPF from water. The development of HTC-derived carbon helped conserving the energy thereby reducing the cost requirement.


Sign in / Sign up

Export Citation Format

Share Document