scholarly journals Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panlong Zhai ◽  
Mingyue Xia ◽  
Yunzhen Wu ◽  
Guanghui Zhang ◽  
Junfeng Gao ◽  
...  

AbstractRational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm−2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.

2021 ◽  
Author(s):  
Zihao Liu ◽  
Shifeng Li ◽  
Fangfang Wang ◽  
Mingxia Li ◽  
Yonghong Ni

FeNi-layered double hydroxide (LDH) is thought to be an excellent electrocatalyst for oxygen evolution reaction (OER), but it always shows extremely poor electrocatalytic activity toward hydrogen evolution reaction (HER) in...


2020 ◽  
Vol 10 (13) ◽  
pp. 4184-4190 ◽  
Author(s):  
Xiao-Peng Li ◽  
Wen-Kai Han ◽  
Kang Xiao ◽  
Ting Ouyang ◽  
Nan Li ◽  
...  

NiFe-layered double hydroxide (NiFe LDH), as an efficient oxygen evolution reaction (OER) electrocatalyst, has emerged as a promising electrocatalyst for catalyzing overall water splitting in alkaline electrolyte.


2020 ◽  
Vol 22 (20) ◽  
pp. 11392-11399 ◽  
Author(s):  
Zhibo Luo ◽  
Zhijie Wang ◽  
Jia Li ◽  
Kang Yang ◽  
Gang Zhou

In our Ru1–N1/TiO2 single-atom catalyst system, isolated Ru1 atoms act as active sites for the reduction of protons, and the TiO2 support offers the photogenerated carriers, allowing for a hydrogen evolution activity comparable to that of Pd.


Author(s):  
Enhbayar Enhtuwshin ◽  
Kang Min Kim ◽  
Young-Kwang Kim ◽  
Sungwook Mhin ◽  
So Jung Kim ◽  
...  

Development of an efficient and stable electrocatalyst for oxygen evolution reaction (OER) is crucial to make hydrogen generated via water splitting as a sustainable fuel. Nickel iron layered double hydroxides...


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Bo Cao ◽  
Minghao Hu ◽  
Yan Cheng ◽  
Peng Jing ◽  
Baocang Liu ◽  
...  

AbstractA 3D self-supported integrated electrode, consisting of heteroatomic nitrogen-doped carbon nanotube arrays on carbon cloth with confined ultrafine Co4N nanoparticles and a distribution of anchored single-atom Co, is fabricated via a cobalt-catalyzed growth strategy using dicyandiamide as the nitrogen and carbon source and a layered cobalt hydroxide-nitrate salt as the precursor. The abundance of exposed active sites, namely, the Co4N nanoparticles, single-atom Co, and heteroatomic N-doped carbon nanotubes, and multiple synergistic effects among these components provide suitable tailoring of the d-band center for facilitating vectorial electron transfer and efficient electrocatalysis. Benefiting from the merits of its structural features and electronic configuration, the prepared electrode exhibits robust performance toward the hydrogen evolution reaction with overpotentials of only 78 and 86 mV at 10 mA cm−2 in acidic and basic electrolytes, respectively. Density functional theory calculations and X-ray photoelectron spectroscopy valence band measurements reveal that the effective tailoring of the d-band center by Co4N nanoparticles plays a crucial role in optimizing the hydrogen adsorption free energy to a more thermoneutral value for efficient electrocatalysis.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yingjie Yang ◽  
Yanhui Yu ◽  
Jing Li ◽  
Qingrong Chen ◽  
Yanlian Du ◽  
...  

AbstractThe investigation of highly effective, durable, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is a prerequisite for the upcoming hydrogen energy society. To establish a new hydrogen energy system and gradually replace the traditional fossil-based energy, electrochemical water-splitting is considered the most promising, environmentally friendly, and efficient way to produce pure hydrogen. Compared with the commonly used platinum (Pt)-based catalysts, ruthenium (Ru) is expected to be a good alternative because of its similar hydrogen bonding energy, lower water decomposition barrier, and considerably lower price. Analyzing and revealing the HER mechanisms, as well as identifying a rational design of Ru-based HER catalysts with desirable activity and stability is indispensable. In this review, the research progress on HER electrocatalysts and the relevant describing parameters for HER performance are briefly introduced. Moreover, four major strategies to improve the performance of Ru-based electrocatalysts, including electronic effect modulation, support engineering, structure design, and maximum utilization (single atom) are discussed. Finally, the challenges, solutions and prospects are highlighted to prompt the practical applications of Ru-based electrocatalysts for HER.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yamei Sun ◽  
Ziqian Xue ◽  
Qinglin Liu ◽  
Yaling Jia ◽  
Yinle Li ◽  
...  

AbstractDeveloping high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm−2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H2O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.


Sign in / Sign up

Export Citation Format

Share Document