scholarly journals Correction: The kinetic resolution of oxazinones by alcoholysis: access to orthogonally protected β-amino acids

Author(s):  
Sarah A. Cronin ◽  
Stephen J. Connon

Correction for ‘The kinetic resolution of oxazinones by alcoholysis: access to orthogonally protected β-amino acids’ by Sarah A. Cronin et al., Org. Biomol. Chem., 2021, 19, 7348–7352, DOI: 10.1039/D1OB01306H.

2004 ◽  
Vol 116 (7) ◽  
pp. 900-902 ◽  
Author(s):  
Kazuishi Makino ◽  
Takayuki Goto ◽  
Yasuhiro Hiroki ◽  
Yasumasa Hamada

2004 ◽  
Vol 70 (4) ◽  
pp. 2529-2534 ◽  
Author(s):  
Hyungdon Yun ◽  
Seongyop Lim ◽  
Byung-Kwan Cho ◽  
Byung-Gee Kim

ABSTRACT Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed ω-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic β-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for l-β-amino-n-butyric acid (l-β-ABA). The enzyme converts various β-amino acids and amines to the corresponding β-keto acids and ketones by using pyruvate as an amine acceptor. The apparent Km and V max for l-β-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM l-β-ABA, the apparent Km and V max for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM d,l-β-ABA, producing optically pure d-β-ABA (99% enantiomeric excess) with 53% conversion.


2015 ◽  
Vol 54 (44) ◽  
pp. 12918-12922 ◽  
Author(s):  
Yong Nian ◽  
Jiang Wang ◽  
Shengbin Zhou ◽  
Shuni Wang ◽  
Hiroki Moriwaki ◽  
...  

ChemCatChem ◽  
2011 ◽  
Vol 3 (2) ◽  
pp. 319-330 ◽  
Author(s):  
Albrecht Berkessel ◽  
Ilona Jurkiewicz ◽  
Resmi Mohan

1999 ◽  
Vol 71 (19) ◽  
pp. 4427-4429 ◽  
Author(s):  
W. Andy Tao ◽  
Duxi Zhang ◽  
Feng Wang ◽  
Peter D. Thomas ◽  
R. Graham Cooks

2004 ◽  
Vol 43 (7) ◽  
pp. 882-884 ◽  
Author(s):  
Kazuishi Makino ◽  
Takayuki Goto ◽  
Yasuhiro Hiroki ◽  
Yasumasa Hamada

2007 ◽  
Vol 73 (16) ◽  
pp. 5370-5373 ◽  
Author(s):  
Shigenori Yamaguchi ◽  
Hidenobu Komeda ◽  
Yasuhisa Asano

ABSTRACT d- and l-amino acids were produced from l- and d-amino acid amides by d-aminopeptidase from Ochrobactrum anthropi C1-38 and l-amino acid amidase from Pseudomonas azotoformans IAM 1603, respectively, in the presence of α-amino-ε-caprolactam racemase from Achromobacter obae as the catalyst by dynamic kinetic resolution of amino acid amides.


2006 ◽  
Vol 72 (4) ◽  
pp. 2707-2720 ◽  
Author(s):  
Hiroaki Iwaki ◽  
Shaozhao Wang ◽  
Stephan Grosse ◽  
Hélène Bergeron ◽  
Ayako Nagahashi ◽  
...  

ABSTRACT Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that offer the prospect of high chemo-, regio-, and enantioselectivity in the organic synthesis of lactones or esters from a variety of ketones. In this study, we have cloned, sequenced, and overexpressed in Escherichia coli a new BVMO, cyclopentadecanone monooxygenase (CpdB or CPDMO), originally derived from Pseudomonas sp. strain HI-70. The 601-residue primary structure of CpdB revealed only 29% to 50% sequence identity to those of known BVMOs. A new sequence motif, characterized by a cluster of charged residues, was identified in a subset of BVMO sequences that contain an N-terminal extension of ∼60 to 147 amino acids. The 64-kDa CPDMO enzyme was purified to apparent homogeneity, providing a specific activity of 3.94 μmol/min/mg protein and a 20% yield. CPDMO is monomeric and NADPH dependent and contains ∼1 mol flavin adenine dinucleotide per mole of protein. A deletion mutant suggested the importance of the N-terminal 54 amino acids to CPDMO activity. In addition, a Ser261Ala substitution in a Rossmann fold motif resulted in an improved stability and increased affinity of the enzyme towards NADPH compared to the wild-type enzyme (Km = 8 μM versus Km = 24 μM). Substrate profiling indicated that CPDMO is unusual among known BVMOs in being able to accommodate and oxidize both large and small ring substrates that include C11 to C15 ketones, methyl-substituted C5 and C6 ketones, and bicyclic ketones, such as decalone and β-tetralone. CPDMO has the highest affinity (Km = 5.8 μM) and the highest catalytic efficiency (k cat/Km ratio of 7.2 × 105 M−1 s−1) toward cyclopentadecanone, hence the Cpd designation. A number of whole-cell biotransformations were carried out, and as a result, CPDMO was found to have an excellent enantioselectivity (E > 200) as well as 99% S-selectivity toward 2-methylcyclohexanone for the production of 7-methyl-2-oxepanone, a potentially valuable chiral building block. Although showing a modest selectivity (E = 5.8), macrolactone formation of 15-hexadecanolide from the kinetic resolution of 2-methylcyclopentadecanone using CPDMO was also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document