dual function
Recently Published Documents


TOTAL DOCUMENTS

2541
(FIVE YEARS 898)

H-INDEX

97
(FIVE YEARS 18)

2022 ◽  
Vol 26 ◽  
pp. 101347
Author(s):  
Xinye Chen ◽  
Shuang Wang ◽  
Xiaohui Zhang ◽  
Yuanman Yu ◽  
Jing Wang ◽  
...  

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122974
Author(s):  
Su Zhang ◽  
Litao Wang ◽  
Jiandong Wang ◽  
Jie Yang ◽  
Lina Fu ◽  
...  

2022 ◽  
Vol 23 (2) ◽  
pp. 812
Author(s):  
Lina Kolloch ◽  
Teresa Kreinest ◽  
Michael Meisterernst ◽  
Andrea Oeckinghaus

Inhibition of the dual function cell cycle and transcription kinase CDK7 is known to affect the viability of cancer cells, but the mechanisms underlying cell line-specific growth control remain poorly understood. Here, we employed a previously developed, highly specific small molecule inhibitor that non-covalently blocks ATP binding to CDK7 (LDC4297) to study the mechanisms underlying cell line-specific growth using a panel of genetically heterogeneous human pancreatic tumor lines as model system. Although LDC4297 diminished both transcription rates and CDK T-loop phosphorylation in a comparable manner, some PDAC lines displayed significantly higher sensitivity than others. We focused our analyses on two well-responsive lines (Mia-Paca2 and Panc89) that, however, showed significant differences in their viability upon extended exposure to limiting LDC4297 concentrations. Biochemical and RNAseq analysis revealed striking differences in gene expression and cell cycle control. Especially the downregulation of a group of cell cycle control genes, among them CDK1/2 and CDC25A/C, correlated well to the observed viability differences in Panc89 versus Mia-Paca2 cells. A parallel downregulation of regulatory pathways supported the hypothesis of a feedforward programmatic effect of CDK7 inhibitors, eventually causing hypersensitivity of PDAC lines.


Author(s):  
guomei wu ◽  
Wen-Jing Li ◽  
Libin Yang ◽  
chenxi zhang

Abstract Proton exchange membrane (PEM) is a key component of proton exchange membrane fuel cells (PEMFCs). In recent years, metal organic framework (MOF) and its composite membranes have become the research hotspots. [Co(L-Glu)(H2O)•H2O]n (Co-MOF, L-Glu = L-glutamate) was synthesized by hydrothermal method. Co2+ ions are coordinated with L-Glu ligands and water molecules to form one-dimensional chains extending along the a-axis, which are further bridged by L-Glu ligands to form a three-dimensional network structure. AC impedance analysis shows that the proton conductivity of Co-MOF reaches 3.14×10-4 S•cm-1 under 98% relative humidity (RH) and 338 K. To improve proton conductivity, different contents of Co-MOF were added in chitosan (CS) to form composite membranes Co-MOF@CS-X (mass fraction X= 5%, 10%, 15% wt). The results show the proton conductivity of the Co-MOF@CS-10 composite membrane is 1.73×10-3 S•cm-1 at 358 K and 98% RH, which is more than 5 times that of Co-MOF. As far as we known, this is the first composite made of amino acid MOFs and CS as proton exchange membrane. Furthermore, Co-MOF has an obvious quenching effect on L-histidine in aqueous solution, which can detect the content of L-histidine in water with high sensitivity, and the detection limit is 1×10-7 M.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Guillermo Albericio ◽  
Susana Aguilar ◽  
Jose Luis Torán ◽  
Rosa Yañez ◽  
Juan Antonio López ◽  
...  

AbstractClinical trials evaluating cardiac progenitor cells (CPC) demonstrated feasibility and safety, but no clear functional benefits. Therefore a deeper understanding of CPC biology is warranted to inform strategies capable to enhance their therapeutic potential. Here we have defined, using a label-free proteomic approach, the differential cytoplasmic and nuclear compartments of human CPC (hCPC). Global analysis of cytoplasmic repertoire in hCPC suggested an important hypoxia response capacity and active collagen metabolism. In addition, comparative analysis of the nuclear protein compartment identified a significant regulation of a small number of proteins in hCPC versus human mesenchymal stem cells (hMSC). Two proteins significantly upregulated in the hCPC nuclear compartment, IL1A and IMP3, showed also a parallel increase in mRNA expression in hCPC versus hMSC, and were studied further. IL1A, subjected to an important post-transcriptional regulation, was demonstrated to act as a dual-function cytokine with a plausible role in apoptosis regulation. The knockdown of the mRNA binding protein (IMP3) did not negatively impact hCPC viability, but reduced their proliferation and migration capacity. Analysis of a panel of putative candidate genes identified HMGA2 and PTPRF as IMP3 targets in hCPC. Therefore, they are potentially involved in hCPC proliferation/migration regulation.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yuhan Zhou ◽  
Hector M. Arredondo ◽  
Ning Wang

P2Y receptors, including eight subtypes, are G protein-coupled receptors that can be activated by extracellular nucleotides. Nearly all P2Y receptors are expressed in bone cells, suggesting their involvements in bone physiology and pathology. However, their exact roles in bone homeostasis are not entirely clear. Therefore, this mini review summarizes new research developments regarding individual P2Y receptors and their roles in bone biology, particularly detailing those which execute both anabolic and catabolic functions. This dual function has highlighted the conundrum of pharmacologically targeting these P2Y receptors in bone-wasting diseases. Further research in finding more precise targeting strategy, such as promoting anabolic effects via combining with physical exercise, should be prioritized.


2022 ◽  
Vol 12 ◽  
Author(s):  
Feng Wang ◽  
Shuo Ning ◽  
Beiming Yu ◽  
Yanfeng Wang

Ubiquitin-specific protease 14 (USP14), a deubiquitinating enzyme (DUB), is associated with proteasomes and exerts a dual function in regulating protein degradation. USP14 protects protein substrates from degradation by removing ubiquitin chains from proteasome-bound substrates, whereas promotes protein degradation by activating the proteasome. Increasing evidence have shown that USP14 is involved in several canonical signaling pathways, correlating with cancer, neurodegenerative diseases, autophagy, immune responses, and viral infections. The activity of USP14 is tightly regulated to ensure its function in various cellular processes. Structural studies have demonstrated that free USP14 exists in an autoinhibited state with two surface loops, BL1 and BL2, partially hovering above and blocking the active site cleft binding to the C-terminus of ubiquitin. Hence, both proteasome-bound and phosphorylated forms of USP14 require the induction of conformational changes in the BL2 loop to activate its deubiquitinating function. Due to its intriguing roles in the stabilization of disease-causing proteins and oncology targets, USP14 has garnered widespread interest as a therapeutic target. In recent years, significant progress has been made on identifying inhibitors targeting USP14, despite the complexity and challenges in improving their selectivity and affinity for USP14. In particular, the crystal structures of USP14 complexed with IU1-series inhibitors revealed the underlying allosteric regulatory mechanism and enabled the further design of potent inhibitors. In this review, we summarize the current knowledge regarding the structure, regulation, pathophysiological function, and selective inhibition of USP14, including disease associations and inhibitor development.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ding Huang ◽  
Ruhong Ming ◽  
Shiqiang Xu ◽  
Shaochang Yao ◽  
Liangbo Li ◽  
...  

The R2R3-MYB gene family participates in several plant physiological processes, especially the regulation of the biosynthesis of secondary metabolites. However, little is known about the functions of R2R3-MYB genes in Gynostemma pentaphyllum (G. pentaphyllum), a traditional Chinese medicinal herb that is an excellent source of gypenosides (a class of triterpenoid saponins) and flavonoids. In this study, a systematic genome-wide analysis of the R2R3-MYB gene family was performed using the recently sequenced G. pentaphyllum genome. In total, 87 R2R3-GpMYB genes were identified and subsequently divided into 32 subgroups based on phylogenetic analysis. The analysis was based on conserved exon–intron structures and motif compositions within the same subgroup. Collinearity analysis demonstrated that segmental duplication events were majorly responsible for the expansion of the R2R3-GpMYB gene family, and Ka/Ks analysis indicated that the majority of the duplicated R2R3-GpMYB genes underwent purifying selection. A combination of transcriptome analysis and quantitative reverse transcriptase-PCR (qRT-PCR) confirmed that Gynostemma pentaphyllum myeloblastosis 81 (GpMYB81) along with genes encoding gypenoside and flavonol biosynthetic enzymes exhibited similar expression patterns in different tissues and responses to methyl jasmonate (MeJA). Moreover, GpMYB81 could bind to the promoters of Gynostemma pentaphyllum farnesyl pyrophosphate synthase 1 (GpFPS1) and Gynostemma pentaphyllum chalcone synthase (GpCHS), the key structural genes of gypenoside and flavonol biosynthesis, respectively, and activate their expression. Altogether, this study highlights a novel transcriptional regulatory mechanism that suggests that GpMYB81 acts as a “dual-function” regulator of gypenoside and flavonol biosynthesis in G. pentaphyllum.


Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 119
Author(s):  
Ebtihal Yaqoob Khojah ◽  
Ahmed Noah Badr ◽  
Dalia Amin Mohamed ◽  
Adel Gabr Abdel-Razek

Food is the source from where a person obtains the body’s daily requirements. People’s current daily habits force them to consume fast food, which is known for its poor nutritional and safety features. So, it is urgent to provide a suitable substitution product to solve this issue. The present investigation aimed to produce a bar with a dual function: nutritional and long shelf life. Two materials were chosen to support the bar manufacturing regarding their bioactive contents, barley malt grass (BMG) and pomegranate byproducts (PBD). Chemical composition, antioxidant, and antimicrobial potency were measured. Β-carotene, vitamin C, and tocopherol were determined using HPLC apparatus. Extracts’ bio-safety against cell lines was determined, besides their enhancement against cell-death factors. Simulation experiments were designed to evaluate extracts’ impact to extend bar shelf life. Data represented the richness of essential minerals and fibers. Results of the FTIR reflected the existence of various active groups in the contents. Phenolic fractions of PBD are distinctive for their content of ellagic (39.21 ± 5.42 mg/kg), ferulic acid fractions (31.28 ± 4.07 mg/kg) which is a known with antifungal activity. Extracts and their mix (1:1) represented inhibition zone diameters that reach 15.1 ± 1.66 mm for bacteria and 23.81 ± 1.41 mm for fungi. Extracts were shown to have better safety against the cell line strain of hepatic HL-7702, with an elevation of a harmful dose of aflatoxin (IC50 304.5 µg/mL for PBD, IC50 381 µg/mL for BMG). Sensory evaluation of fortified bars reflected a preferable application of mix (1:1) due to color attributes and panelist evaluations, the same result recorded for simulation studies. The experiment recommended applying a mix (1:1) of BMG: PBD in addition to their extracts (200 mg/kg dough) for functional bar manufacturing with antifungal properties.


Author(s):  
Chan Wang ◽  
Yimin He ◽  
Yalan Xu ◽  
Laizhi Sui ◽  
Tao Jiang ◽  
...  

Turn-on thermosensitive carbon dots (CDs) with dual function of imaging and sensing are desirable for biological research and clinical diagnosis at cellular level. Herein, we synthesized eight types of novel...


Sign in / Sign up

Export Citation Format

Share Document