scholarly journals High-performance asymmetric supercapacitor based on CdCO3/CdO/Co3O4 composite supported on Ni foam

RSC Advances ◽  
2021 ◽  
Vol 11 (50) ◽  
pp. 31557-31565
Author(s):  
Rodrigo Henríquez ◽  
Alifhers S. Mestra-Acosta ◽  
Eduardo Muñoz ◽  
Paula Grez ◽  
Elena Navarrete-Astorga ◽  
...  

This work presents for the first time a CdCO3/CdO/Co3O4@nickel foam based supercapacitor with high both specific capacitance and energy density, a widespread potential window and a long cycle life.

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1143 ◽  
Author(s):  
Anil Yedluri ◽  
Tarugu Anitha ◽  
Hee-Je Kim

Hierarchical NiMoO4/NiMoO4 nanoflowers were fabricated on highly conductive flexible nickel foam (NF) substrates using a facile hydrothermal method to achieve rapid charge-discharge ability, high energy density, long cycling lifespan, and higher flexibility for high-performance supercapacitor electrode materials. The synthesized composite electrode material, NF/NiMoO4/NiMoO4 with a nanoball-like NF/NiMoO4 structure on a NiMoO4 surface over a NF substrate, formed a three-dimensional interconnected porous network for high-performance electrodes. The novel NF/NiMoO4/NiMoO4 nanoflowers not only enhanced the large surface area and increased the electrochemical activity, but also provided an enhanced rapid ion diffusion path and reduced the charge transfer resistance of the entire electrode effectively. The NF/NiMoO4/NiMoO4 composite exhibited significantly improved supercapacitor performance in terms of a sustained cycling life, high specific capacitance, rapid charge-discharge capability, high energy density, and good rate capability. Electrochemical analysis of the NF/NiMoO4/NiMoO4 nanoflowers fabricated on the NF substrate revealed ultra-high electrochemical performance with a high specific capacitance of 2121 F g−1 at 12 mA g−1 in a 3 M KOH electrolyte and 98.7% capacitance retention after 3000 cycles at 14 mA g−1. This performance was superior to the NF/NiMoO4 nanoball electrode (1672 F g−1 at 12 mA g−1 and capacitance retention 93.4% cycles). Most importantly, the SC (NF/NiMoO4/NiMoO4) device displayed a maximum energy density of 47.13 W h kg−1, which was significantly higher than that of NF/NiMoO4 (37.1 W h kg−1). Overall, the NF/NiMoO4/NiMoO4 composite is a suitable material for supercapacitor applications.


2016 ◽  
Vol 4 (20) ◽  
pp. 7689-7699 ◽  
Author(s):  
Peiyu Hou ◽  
Guoran Li ◽  
Xueping Gao

A concentration-gradient doping strategy is introduced into micron-sized spherical Li-rich layered oxides. As a result, they exhibit high volumetric energy density, long cycle life and enhanced thermal stability.


2019 ◽  
Vol 7 (42) ◽  
pp. 24374-24388 ◽  
Author(s):  
Bing Jiang ◽  
Xiaohan Ban ◽  
Qian Wang ◽  
Kui Cheng ◽  
Kai Zhu ◽  
...  

Ternary Ni–S–P nanoparticles on graphene have been prepared through anionic substitution for supercapacitors for the first time.


2020 ◽  
Vol 450 ◽  
pp. 227694 ◽  
Author(s):  
Yangyang Luo ◽  
Chenhui Yang ◽  
Yapeng Tian ◽  
Yi Tang ◽  
Xingtian Yin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document