scholarly journals Radical Chain Monoalkylation of Pyridines

2021 ◽  
Author(s):  
Samuel Rieder ◽  
Camilo Meléndez ◽  
Fabrice Dénès ◽  
Kleni Mulliri ◽  
Harish Jangra ◽  
...  

The monoalkylation of N-methoxypyridinium salts with alkyl radicals generated from alkenes (via hydroboration with catecholborane), alkyl iodides (via iodine atom transfer) and xanthates is reported. The reaction proceeds under neutral...

2021 ◽  
Author(s):  
Samuel Rieder ◽  
Camilo Meléndez ◽  
Kleni Mulliri ◽  
Philippe Renaud

<p>The monoalkylation of N-methoxypyridinium salts with alkyl radicals generated from alkenes (via hydroboration with catecholborane), alkyl iodides (via iodine atom transfer) and xanthates is reported. The reaction proceeds under neutral conditions since no acid is needed to activate the heterocycle and does not require the use of an external oxidant. A rate constant for the addition of a primary radical to N-methoxylepidinium >107 M–1 s–1 was experimentally determined. This rate constant is more than one order of magnitude larger than the one measured for the addition of primary alkyl radical to protonated lepidine demonstrating the remarkable reactivity of methoxypyridinium salts towards radicals. The reaction could be extended to a three component carbopyridinylation of electron rich alkenes including enol esters, enol ethers and enamides.</p>


Tetrahedron ◽  
1991 ◽  
Vol 47 (32) ◽  
pp. 6171-6188 ◽  
Author(s):  
Dennis P. Curran ◽  
Dooseop Kim

Synthesis ◽  
2017 ◽  
Vol 49 (18) ◽  
pp. 4124-4132 ◽  
Author(s):  
Alexander Dilman ◽  
Liubov Panferova ◽  
Marina Struchkova

A method for the synthesis of gem-difluorohomoallylic alcohols by the substitution of iodine in the iododifluoromethyl group by a vinyl fragment is described. The reaction proceeds via an intramolecular iodine atom transfer followed by β-elimination. The reaction is performed in the presence of an iridium photocatalyst, fac-Ir(ppy)3, and triphenylphosphine under irradiation with light-emitting diodes.


2019 ◽  
Author(s):  
Melanie Short ◽  
Mina Shehata ◽  
Matthew Sanders ◽  
Jennifer Roizen

Sulfamides guide intermolecular chlorine transfer to gamma-C(sp<sup>3</sup>) centers. This unusual position-selectivity arises because accessed sulfamidyl radical intermediates engage in otherwise rare 1,6-hydrogen-atom transfer processes. The disclosed chlorine-transfer reaction relies on a light-initiated radical chain-propagation mechanism to oxidize C(sp<sup>3</sup>)-H bonds.


2019 ◽  
Author(s):  
Melanie Short ◽  
Mina Shehata ◽  
Matthew Sanders ◽  
Jennifer Roizen

Sulfamides guide intermolecular chlorine transfer to gamma-C(sp<sup>3</sup>) centers. This unusual position-selectivity arises because accessed sulfamidyl radical intermediates engage in otherwise rare 1,6-hydrogen-atom transfer processes. The disclosed chlorine-transfer reaction relies on a light-initiated radical chain-propagation mechanism to oxidize C(sp<sup>3</sup>)-H bonds.


2020 ◽  
Author(s):  
Kousuke Ebisawa ◽  
Kana Izumi ◽  
Yuka Ooka ◽  
Hiroaki Kato ◽  
Sayori Kanazawa ◽  
...  

Catalytic enantioselective synthesis of tetrahydrofurans, which are found in the structures of many biologically active natural products, via a transition-metal catalyzed-hydrogen atom transfer (TM-HAT) and radical-polar crossover (RPC) mechanism is described herein. Hydroalkoxylation of non-conjugated alkenes proceeded efficiently with excellent enantioselectivity (up to 94% ee) using a suitable chiral cobalt catalyst, <i>N</i>-fluoro-2,4,6-collidinium tetrafluoroborate, and diethylsilane. Surprisingly, absolute configuration of the product was highly dependent on the steric hindrance of the silane. Slow addition of the silane, the dioxygen effect in the solvent, thermal dependency, and DFT calculation results supported the unprecedented scenario of two competing selective mechanisms. For the less-hindered diethylsilane, a high concentration of diffused carbon-centered radicals invoked diastereoenrichment of an alkylcobalt(III) intermediate by a radical chain reaction, which eventually determined the absolute configuration of the product. On the other hand, a more hindered silane resulted in less opportunity for radical chain reaction, instead facilitating enantioselective kinetic resolution during the late-stage nucleophilic displacement of the alkylcobalt(IV) intermediate.


Sign in / Sign up

Export Citation Format

Share Document