Support-based modulation strategies in single-atom catalysts for electrochemical CO2 reduction: graphene and conjugated macrocyclic complexes

Author(s):  
Zhanzhao Fu ◽  
Mingliang Wu ◽  
Yipeng Zhou ◽  
Zhiyang Lyu ◽  
Yixin Ouyang ◽  
...  

Electrochemical CO2 reduction reaction (CO2RR) is a promising method to decrease the CO2 concentration in the atmosphere and produce high value-added chemicals simultaneously. Catalysts play a central role in the...

Author(s):  
Danni Zhou ◽  
Xinyuan Li ◽  
Huishan Shang ◽  
Fengjuan Qin ◽  
Wenxing Chen

Metal-organic framework (MOF) derived single-atom catalysts (SACs), featured unique active sites and adjustable topological structures, exhibit high electrocatalytic performance on carbon dioxide reduction reactions (CO2RR). By modulating elements and atomic...


Author(s):  
Xu Hu ◽  
Sai Yao ◽  
Letian Chen ◽  
Xu Zhang ◽  
Menggai Jiao ◽  
...  

Electrochemical CO2 reduction reaction (CO2RR) is a very important approach to realize sustainable development. Single-atom catalysts show advantages in both homogeneous and heterogeneous catalysis, and considerable progress has been made...


Author(s):  
Min Zhang ◽  
Wenbo Wei ◽  
Shenghua Zhou ◽  
Dong-Dong Ma ◽  
Aihui Cao ◽  
...  

Electrochemical CO2 reduction reaction (CO2RR) to value-added and readily collectable liquid products is promising but remains a great challenge due to the lack of efficient and robust electrocatalysts. Herein, a...


Author(s):  
Shuzhen Zhang ◽  
Celia Chen ◽  
Kangkang Li ◽  
Hai Yu ◽  
Fengwang Li

Electrochemical CO2 reduction reaction (eCO2RR) has been regarded as a promising means to store renewable electricity in the form of value-added chemicals or fuels. However, most of present eCO2RR studies...


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2029
Author(s):  
Muhammad Usman ◽  
Muhammad Humayun ◽  
Mustapha D. Garba ◽  
Latif Ullah ◽  
Zonish Zeb ◽  
...  

Electrochemical CO2 reduction reaction (CO2RR) provides a promising approach to curbing harmful emissions contributing to global warming. However, several challenges hinder the commercialization of this technology, including high overpotentials, electrode instability, and low Faradic efficiencies of desirable products. Several materials have been developed to overcome these challenges. This mini-review discusses the recent performance of various cobalt (Co) electrocatalysts, including Co-single atom, Co-multi metals, Co-complexes, Co-based metal–organic frameworks (MOFs), Co-based covalent organic frameworks (COFs), Co-nitrides, and Co-oxides. These materials are reviewed with respect to their stability of facilitating CO2 conversion to valuable products, and a summary of the current literature is highlighted, along with future perspectives for the development of efficient CO2RR.


2020 ◽  
Vol 167 (16) ◽  
pp. 164503
Author(s):  
Hyeonuk Choi ◽  
Dong-Kyu Lee ◽  
Mi-Kyung Han ◽  
Gnanaprakasam Janani ◽  
Subramani Surendran ◽  
...  

2021 ◽  
Author(s):  
Qingyun Qu ◽  
Shufang Ji ◽  
Yuanjun Chen ◽  
Dingsheng Wang ◽  
Yadong Li

Electrochemical CO2 reduction reaction (CO2RR) is viewed as a promising way to remove the greenhouse gas CO2 from atmosphere and convert them to useful industrial products like methane, methanol, formate,...


Sign in / Sign up

Export Citation Format

Share Document