Investigations of structure and conformation. Part 6. Long-range interactions and line-width alternation for γ-proton splittings in ·CH2OCH2OCH3: temperature-dependent electron spin resonance spectra

Author(s):  
Christopher Gaze ◽  
Bruce C. Gilbert
1968 ◽  
Vol 46 (2) ◽  
pp. 325-327 ◽  
Author(s):  
W. F. Forbes ◽  
P. D. Sullivan

The electron spin resonance (e.s.r.) spectrum of 4,4′-dimethoxybiphenyl in aluminium chloride–nitromethane is remarkably temperature dependent. The changes are explained by postulating the rapid interconversion of conformational isomers, leading to line-width alternation.


MRS Advances ◽  
2018 ◽  
Vol 3 (32) ◽  
pp. 1831-1836
Author(s):  
C. L. Saiz ◽  
E. Castro ◽  
L. M. Martinez ◽  
S. R. J. Hennadige ◽  
L. Echegoyen ◽  
...  

ABSRTACTIn this article, we report low-temperature electron spin resonance (ESR) investigations carried out on solution processed three-layer inverted solar cell structures: PC61BM/CH3NH3PbI3/PEDOT:PSS/Glass, where PC61BM and PEDOT:PSS act as electron and hole transport layers, respectively. ESR measurements were conducted on ex-situ light (1 Sun) illuminated samples. We find two distinct ESR spectra. First ESR spectra resembles a typical powder pattern, associated with gx = gy = 4.2; gz = 9.2, found to be originated from Fe3+ extrinsic impurity located in the glass substrate. Second ESR spectra contains a broad (peak-to-peak line width ∼ 10 G) and intense ESR signal appearing at g = 2.008; and a weak, partly overlapped, but much narrower (peak-to-peak line width ∼ 4 G) ESR signal at g = 2.0022. Both sets of ESR spectra degrade in intensity upon light illumination. The latter two signals were found to stem from light-induced silicon dangling bonds and oxygen vacancies, respectively. Our controlled measurements confirm that these centers were generated during UV-ozone treatment of the glass substrate –a necessary step to be performed before PEDOT:PSS is spin coated. This work forms a significant step in understanding the light-induced- as well as extrinsic defects in perovskite solar cell materials.


Sign in / Sign up

Export Citation Format

Share Document