Oxidative cleavage of an alkene with catalytic ruthenium tetroxide

Author(s):  
Meriel Kimberley
2005 ◽  
Vol 70 (9) ◽  
pp. 1447-1464 ◽  
Author(s):  
Miroslav Kvasnica ◽  
Iva Tišlerová ◽  
Jan Šarek ◽  
Jan Sejbal ◽  
Ivana Císařová

19β,28-Epoxy-4,5-seco-3,5-cyclo-18α-olean-3(5)-ene (2) is an appropriate compound for oxidations, which lead to new oxidized compounds with potential biological activities. Several oxidations were used such as epoxidation, allylic oxidation, oxidative cleavage of double bond and other ones. From the starting compound epoxides 3a, 3b and unsaturated ketone 4 were prepared. This ketone was further oxidized to diketone 6 and anhydride 7. The double bonds of all unsaturated compounds were cleaved with ruthenium tetroxide to afford new A-seco oleananes. The structure and stereochemistry of the compounds were derived from IR, MS, 1H and 13C NMR spectra (1D and 2D COSY, TOCSY, NOESY, HSQC, HMBC).


1979 ◽  
Vol 10 (23) ◽  
Author(s):  
C. GUIZARD ◽  
H. CHERADAME ◽  
Y. BRUNEL ◽  
C. G. BEGUIN

2010 ◽  
Vol 46 (4) ◽  
pp. 545-548
Author(s):  
M. Kvasnica ◽  
P. Spacilova ◽  
M. Budesinsky ◽  
M. Hajduch ◽  
J. Sarek

1979 ◽  
Vol 13 (2) ◽  
pp. 175-177 ◽  
Author(s):  
Christian Guizard ◽  
Herve Cheradame ◽  
Yvon Brunel ◽  
Claude G. Beguin

Author(s):  
Henry H. Eichelberger ◽  
John G. Baust ◽  
Robert G. Van Buskirk

For research in cell differentiation and in vitro toxicology it is essential to provide a natural state of cell structure as a benchmark for interpreting results. Hypothermosol (Cryomedical Sciences, Rockville, MD) has proven useful in insuring the viability of synthetic human epidermis during cold-storage and in maintaining the epidermis’ ability to continue to differentiate following warming.Human epidermal equivalent, EpiDerm (MatTek Corporation, Ashland, MA) consisting of fully differentiated stratified human epidermal cells were grown on a microporous membrane. EpiDerm samples were fixed before and after cold-storage (4°C) for 5 days in Hypothermosol or skin culture media (MatTek Corporation) and allowed to recover for 7 days at 37°C. EpiDerm samples were fixed 1 hour in 2.5% glutaraldehyde in sodium cacodylate buffer (pH 7.2). A secondary fixation with 0.2% ruthenium tetroxide (Polysciences, Inc., Warrington, PA) in sodium cacodylate was carried out for 3 hours at 4°C. Other samples were similarly fixed, but with 1% Osmium tetroxide in place of ruthenium tetroxide. Samples were dehydrated through a graded acetone series, infiltrated with Spurrs resin (Polysciences Inc.) and polymerized at 70°C.


1997 ◽  
Vol 62 (10) ◽  
pp. 1642-1649 ◽  
Author(s):  
Ivan Černý ◽  
Tereza Slavíková ◽  
Vladimír Pouzar

Addition of 4-methoxybenzyl alcohol to 3β-hydroxy-5α-androst-15-en-17-one gave the mixture of isomeric 15-(4-methoxyphenyl)methoxy derivatives from which, after acetylation and chromatography, the major 15β isomer was separated. Borohydride reduction gave 17β-hydroxy derivative which was protected as methoxymethyl ether. Oxidative cleavage of protecting group at position 15 and the subsequent Jones oxidation afforded corresponding 15-ketone. Its oximation with O-(carboxymethyl)hydroxylamine, deacetylation and methylation with diazomethane gave protected O-(carboxymethyl)oxime derivative with free hydroxy group at position 3. Its oxidation afforded dihydrotestosterone derivative and successive deprotection of position 17 and of carboxy group led to final (15E)-17β-hydroxy-5α-androstane-3,15-dione 15-[O-(carboxymethyl)]oxime. The title compound was designed as dihydrotestosterone hapten for heterologous radioimmunoassays.


Sign in / Sign up

Export Citation Format

Share Document