scholarly journals The Arabidopsis locus AT3G03890 encodes a dimeric β-barrel protein implicated in heme degradation

2020 ◽  
Vol 477 (24) ◽  
pp. 4785-4796
Author(s):  
Jia Wang ◽  
Qi Guo ◽  
Xiaoyi Li ◽  
Xiao Wang ◽  
Lin Liu

Plant tetrapyrroles, including heme and bilins, are synthesized in plastids. Heme oxygenase (HO) catalyzes the oxidative cleavage of heme to the linear tetrapyrrole biliverdin as the initial step in bilin biosynthesis. Besides the canonical α-helical HO that is conserved from prokaryotes to human, a subfamily of non-canonical dimeric β-barrel HO has been found in bacteria. In this work, we discovered that the Arabidopsis locus AT3G03890 encodes a dimeric β-barrel protein that is structurally related to the putative non-canonical HO and is located in chloroplasts. The recombinant protein was able to bind and degrade heme in a manner different from known HO proteins. Crystal structure of the heme–protein complex reveals that the heme-binding site is in the interdimer interface and the heme iron is co-ordinated by a fixed water molecule. Our results identify a new protein that may function additionally in the tetrapyrrole biosynthetic pathway.

Biochemistry ◽  
2002 ◽  
Vol 41 (23) ◽  
pp. 7293-7300 ◽  
Author(s):  
Masakazu Sugishima ◽  
Hiroshi Sakamoto ◽  
Yoshimitsu Kakuta ◽  
Yoshiaki Omata ◽  
Shunsuke Hayashi ◽  
...  

Biochemistry ◽  
2008 ◽  
Vol 47 (39) ◽  
pp. 10354-10364 ◽  
Author(s):  
Christopher T. Jurgenson ◽  
Kristin E. Burns ◽  
Tadhg P. Begley ◽  
Steven E. Ealick

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 735
Author(s):  
Fernando Pagels ◽  
Vitor Vasconcelos ◽  
Ana Catarina Guedes

Carotenoids are tetraterpenoids molecules present in all photosynthetic organisms, responsible for better light-harvesting and energy dissipation in photosynthesis. In cyanobacteria, the biosynthetic pathway of carotenoids is well described, and apart from the more common compounds (e.g., β-carotene, zeaxanthin, and echinenone), specific carotenoids can also be found, such as myxoxanthophyll. Moreover, cyanobacteria have a protein complex called orange carotenoid protein (OCP) as a mechanism of photoprotection. Although cyanobacteria are not the organism of choice for the industrial production of carotenoids, the optimisation of their production and the evaluation of their bioactive capacity demonstrate that these organisms may indeed be a potential candidate for future pigment production in a more environmentally friendly and sustainable approach of biorefinery. Carotenoids-rich extracts are described as antioxidant, anti-inflammatory, and anti-tumoral agents and are proposed for feed and cosmetical industries. Thus, several strategies for the optimisation of a cyanobacteria-based bioprocess for the obtention of pigments were described. This review aims to give an overview of carotenoids from cyanobacteria not only in terms of their chemistry but also in terms of their biotechnological applicability and the advances and the challenges in the production of such compounds.


Biochemistry ◽  
2008 ◽  
Vol 47 (50) ◽  
pp. 13326-13335 ◽  
Author(s):  
L. W. Tremblay ◽  
F. Fan ◽  
M. W. Vetting ◽  
J. S. Blanchard

2006 ◽  
Vol 62 (5) ◽  
pp. o1754-o1755
Author(s):  
Neng-Fang She ◽  
Sheng-Li Hu ◽  
Hui-Zhen Guo ◽  
An-Xin Wu

The title compound, C24H18Br2N4O2·H2O, forms a supramolecular structure via N—H...O, O—H...O and C—H...O hydrogen bonds. In the crystal structure, the water molecule serves as a bifurcated hydrogen-bond acceptor and as a hydrogen-bond donor.


Sign in / Sign up

Export Citation Format

Share Document