scholarly journals Carotenoids from Cyanobacteria: Biotechnological Potential and Optimization Strategies

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 735
Author(s):  
Fernando Pagels ◽  
Vitor Vasconcelos ◽  
Ana Catarina Guedes

Carotenoids are tetraterpenoids molecules present in all photosynthetic organisms, responsible for better light-harvesting and energy dissipation in photosynthesis. In cyanobacteria, the biosynthetic pathway of carotenoids is well described, and apart from the more common compounds (e.g., β-carotene, zeaxanthin, and echinenone), specific carotenoids can also be found, such as myxoxanthophyll. Moreover, cyanobacteria have a protein complex called orange carotenoid protein (OCP) as a mechanism of photoprotection. Although cyanobacteria are not the organism of choice for the industrial production of carotenoids, the optimisation of their production and the evaluation of their bioactive capacity demonstrate that these organisms may indeed be a potential candidate for future pigment production in a more environmentally friendly and sustainable approach of biorefinery. Carotenoids-rich extracts are described as antioxidant, anti-inflammatory, and anti-tumoral agents and are proposed for feed and cosmetical industries. Thus, several strategies for the optimisation of a cyanobacteria-based bioprocess for the obtention of pigments were described. This review aims to give an overview of carotenoids from cyanobacteria not only in terms of their chemistry but also in terms of their biotechnological applicability and the advances and the challenges in the production of such compounds.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Wen-Yuan Lee ◽  
Hsin-Yi Chen ◽  
Kuan-Chung Chen ◽  
Calvin Yu-Chian Chen

Rheumatoid arthritis (RA) is a chronic inflammatory disease that will affect quality of life and, working efficiency, and produce negative thoughts for patients. Current therapy of RA is treated with disease-modifying antirheumatic drugs (DMARDs). Although most of these treatment methods are effective, most patients still have a pleasant experience either due to poor efficacy or side effects or both. Interleukin-6 receptor (IL6R) is important in the pathogenesis of RA. In this study, we would like to detect the potential candidates which inhibit IL6R against RA from traditional Chinese medicine (TCM). We use TCM compounds from the TCM Database@Taiwan for virtually screening the potential IL6R inhibitors. The TCM candidate compound, calycosin, has potent binding affinity with IL6R protein. The molecular dynamics simulation was employed to validate the stability of interaction in the protein complex with calycosin. The analysis indicates that protein complex with calycosin is more stable. In addition, calycosin is known to be one of the components ofAngelica sinensis, which has been indicated to have an important role in the treatment of rheumatoid arthritis. Therefore, calycosin is a potential candidate as lead compounds for further study in drug development process with IL6R protein against rheumatoid arthritis.


2011 ◽  
Vol 38 (11) ◽  
pp. 833 ◽  
Author(s):  
Christopher I. Cazzonelli

Carotenoids are natural isoprenoid pigments that provide leaves, fruits, vegetables and flowers with distinctive yellow, orange and some reddish colours as well as several aromas in plants. Their bright colours serve as attractants for pollination and seed dispersal. Carotenoids comprise a large family of C40 polyenes and are synthesised by all photosynthetic organisms, aphids, some bacteria and fungi alike. In animals carotenoid derivatives promote health, improve sexual behaviour and are essential for reproduction. As such, carotenoids are commercially important in agriculture, food, health and the cosmetic industries. In plants, carotenoids are essential components required for photosynthesis, photoprotection and the production of carotenoid-derived phytohormones, including ABA and strigolactone. The carotenoid biosynthetic pathway has been extensively studied in a range of organisms providing an almost complete pathway for carotenogenesis. A new wave in carotenoid biology has revealed implications for epigenetic and metabolic feedback control of carotenogenesis. Developmental and environmental signals can regulate carotenoid gene expression thereby affecting carotenoid accumulation. This review highlights mechanisms controlling (1) the first committed step in phytoene biosynthesis, (2) flux through the branch to synthesis of α- and β-carotenes and (3) metabolic feedback signalling within and between the carotenoid, MEP and ABA pathways.


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 426 ◽  
Author(s):  
Jiro Koizumi ◽  
Naoki Takatani ◽  
Noritoki Kobayashi ◽  
Koji Mikami ◽  
Kazuo Miyashita ◽  
...  

Carotenoids are natural pigments that contribute to light harvesting and photo-protection in photosynthetic organisms. In this study, we analyzed the carotenoid profiles, including mono-hydroxy and epoxy-carotenoids, in the economically valuable red seaweed Pyropia yezoensis, to clarify the detailed biosynthetic and metabolic pathways in the order Bangiales. P. yezoensis contained lutein, zeaxanthin, α-carotene, and β-carotene, as major carotenoids in both the thallus and conchocelis stages. Monohydroxy intermediate carotenoids for the synthesis of lutein with an ε-ring from α-carotene, α-cryptoxanthin (β,ε-caroten-3’-ol), and zeinoxanthin (β,ε-caroten-3-ol) were identified. In addition, β-cryptoxanthin, an intermediate in zeaxanthin synthesis from β-carotene, was also detected. We also identified lutein-5,6-epoxide and antheraxanthin, which are metabolic products of epoxy conversion from lutein and zeaxanthin, respectively, by LC-MS and 1H-NMR. This is the first report of monohydroxy-carotenoids with an ε-ring and 5,6-epoxy-carotenoids in Bangiales. These results provide new insights into the biosynthetic and metabolic pathways of carotenoids in red seaweeds.


2020 ◽  
Vol 477 (24) ◽  
pp. 4785-4796
Author(s):  
Jia Wang ◽  
Qi Guo ◽  
Xiaoyi Li ◽  
Xiao Wang ◽  
Lin Liu

Plant tetrapyrroles, including heme and bilins, are synthesized in plastids. Heme oxygenase (HO) catalyzes the oxidative cleavage of heme to the linear tetrapyrrole biliverdin as the initial step in bilin biosynthesis. Besides the canonical α-helical HO that is conserved from prokaryotes to human, a subfamily of non-canonical dimeric β-barrel HO has been found in bacteria. In this work, we discovered that the Arabidopsis locus AT3G03890 encodes a dimeric β-barrel protein that is structurally related to the putative non-canonical HO and is located in chloroplasts. The recombinant protein was able to bind and degrade heme in a manner different from known HO proteins. Crystal structure of the heme–protein complex reveals that the heme-binding site is in the interdimer interface and the heme iron is co-ordinated by a fixed water molecule. Our results identify a new protein that may function additionally in the tetrapyrrole biosynthetic pathway.


RSC Advances ◽  
2015 ◽  
Vol 5 (110) ◽  
pp. 90508-90514 ◽  
Author(s):  
Renfei Cheng ◽  
Chunmei Wang ◽  
Zhijun Xu ◽  
Ruiqing Chu ◽  
Jigong Hao ◽  
...  

This large EFIS at low applied field indicates that the BNBT–0.009SFN system is a potential candidate material for environmentally friendly electromechanical devices and actuator applications.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1589 ◽  
Author(s):  
Mazin Tahir ◽  
Abdul Samad Mohammed ◽  
Umar Azam Muhammad

The effect of various operational factors, such as sliding speed, normal load and temperature on the tribological properties of Date palm fruit syrup (DPFS) as an environmentally friendly lubricant, is investigated. Ball-on-disc wear tests are conducted on mild steel samples in the presence of DPFS as a lubricant under different conditions and the coefficient of friction and wear rate are measured. Scanning electron microscopy, stylus profilometry, and Fourier transform infrared spectroscopy are used to evaluate the wear tracks to determine the underlying wear mechanisms. Results showed that DPFS has excellent tribological properties in terms of low friction and low wear rates making it a potential candidate to be used as a lubricant in tribological applications.


2019 ◽  
Vol 20 (10) ◽  
pp. 2463 ◽  
Author(s):  
Xiaoqiong Chen ◽  
Yu Tao ◽  
Asif Ali ◽  
Zhenhua Zhuang ◽  
Daiming Guo ◽  
...  

Black and red rice are rich in both anthocyanin and proanthocyanin content, which belong to a large class of flavonoids derived from a group of phenolic secondary metabolites. However, the molecular pathways and mechanisms underlying the flavonoid biosynthetic pathway are far from clear. Therefore, this study was undertaken to gain insight into physiological factors that are involved in the flavonoid biosynthetic pathway in rice cultivars with red, black, and white colors. RNA sequencing of caryopsis and isobaric tags for relative and absolute quantification (iTRAQ) analyses have generated a nearly complete catalog of mRNA and expressed proteins in different colored rice cultivars. A total of 31,700 genes were identified, of which 3417, 329, and 227 genes were found specific for red, white, and black rice, respectively. A total of 13,996 unique peptides corresponding to 3916 proteins were detected in the proteomes of black, white, and red rice. Coexpression network analyses of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) among the different rice cultivars showed significant differences in photosynthesis and flavonoid biosynthesis pathways. Based on a differential enrichment analysis, 32 genes involved in the flavonoid biosynthesis pathway were detected, out of which only CHI, F3H, ANS, and FLS were detected by iTRAQ. Taken together, the results point to differences in flavonoid biosynthesis pathways among different colored rice cultivars, which may reflect differences in physiological functions. The differences in contents and types of flavonoids among the different colored rice cultivars are related to changes in base sequences of Os06G0162500, Os09G0455500, Os09G0455500, and Os10G0536400. Current findings expand and deepen our understanding of flavonoid biosynthesis and concurrently provides potential candidate genes for improving the nutritional qualities of rice.


2020 ◽  
Vol 49 (1) ◽  
pp. 88-98
Author(s):  
Jaber Dehghani ◽  
Ehsan Atazadeh ◽  
Yadollah Omidi ◽  
Ali Movafeghi

AbstractThe microalga Dunaliella has been the focus of attention over recent decades owing to its high biotechnological potential for the production of β-carotene, biofuels and even as a good expression system for the production of recombinant proteins. Different species of this genus have unique features, biological characteristics and biotechnological potential. Therefore, it is necessary to have a clear and reliable taxonomic method to identify different species of Dunaliella. Although several taxonomic systems are available for Dunaliella based on morphological, physiological and molecular features, none of these methods are reliable enough and some controversies exist over different classification systems. In the current study, molecular techniques and bioinformatics tools have been used to re-assess the phylogenetic position of Dunaliella species based on 18S ribosomal DNA (18S rDNA), ITS and rbcL regions. The overall findings based on these markers provide a new and more reliable tool for phylogenetic analysis of Dunaliella species/strains.


2020 ◽  
pp. 38-43
Author(s):  
Mohammed Younus Hasan Alghadhywi

Purpose. The purpose of the study is to analyse the development trends of Ukrainian industry and identify ways to solve existing problems based on the intensification of innovation processes. Methodology of research. During the research methods generally accepted in economic science were applied, in particular: statistical and graphic – for definition of Ukrainian industry development tendencies; comparative analysis – to compare the Ukrainian industry and the world; system generalization – in substantiating the directions of industry innovative development intensification. Findings. The current trends in the development of industrial production in Ukraine, which are characterized by falling production volumes and negative changes in the structure of the industry, are revealed. The reduction of industrial production is revealed, which occurs mainly due to the curtailment of the processing industry enterprises activity. Negative changes in the structure of the industry are revealed, among which the increase in the share of low-tech productions with a significant decrease in medium-tech and moderate –high-tech ones are highlighted. Based on the correlation between industrial production indicators and GDP dynamics, it is proved that industry forms the foundation of the country`s social and economic development. It was found that the Ukrainian economy lags far behind the development of the world`s leading countries in terms of its material, resource, and energy intensity. The article proves that the issue of industrial development based on the intensification of innovation processes in Ukraine needs radical changes in reforming the management mechanisms of innovation processes and relations between science, society, business, and government to intensify investment activities support the technological development of industry, the introduction of environmentally friendly production. Originality. The analysis of the state of Ukraine`s industry and substantiation of the need for its innovative development was further developed, in the context of which measures were proposed to intensify innovation processes, which, in addition to existing ones, provide for the formation of a managing mechanism for innovative industrial development; coordination of industrial sector development policy with the goals of sustainable and inclusive development; introduction of environmentally friendly industrial production; expansion of cross-border economic and environmental cooperation; development of the strategy of development of the industry of Ukraine taking into account the European experience. Practical value. The results of the study are the basis for solving practical problems of improving the situation and the transition to innovative industrial development in Ukraine. Key words: industry of Ukraine, processing industry, structure of industrial production, industry innovative development.


Sign in / Sign up

Export Citation Format

Share Document