orange carotenoid protein
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 51)

H-INDEX

33
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Mahmoud Sharawy ◽  
Natalia B. Pigni ◽  
Eric R. May ◽  
José A. Gascón

2022 ◽  
Author(s):  
Adjele Wilson ◽  
Elena A. Andreeva ◽  
Stanislaw Nizinski ◽  
Lea Talbot ◽  
Elisabeth Hartmann ◽  
...  

The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection. Here, we report on the functional, spectral and structural characteristics of the peculiar Planktothrix PCC7805 OCP (Plankto-OCP). We show that this OCP variant is characterized by higher photoactivation and recovery rates, and a stronger energy-quenching activity, compared to other OCPs studied thus far. We characterize the effect of the functionalizing carotenoid and of his-tagging on these reactions, and the time scales on which these modifications affect photoactivation. The presence of a His-tag at the C-terminus has a large influence on photoactivation, thermal recovery and PBS-fluorescence quenching, and likewise for the nature of the carotenoid that additionally affects the yield and characteristics of excited states and the ns-s dynamics of photoactivated OCP. By solving the structures of Plankto-OCP in the ECN- and CAN-functionalized states, each in two closely-related crystal forms, we further unveil the molecular breathing motions that animate Plankto-OCP at the monomer and dimer levels. We finally discuss the structural changes that could explain the peculiar properties of Plankto-OCP.


2021 ◽  
Author(s):  
Stanislaw Nizinski ◽  
Adjele Wilson ◽  
Lucas Martinez Uriarte ◽  
Cyril Ruckebusch ◽  
Elena Andreeva ◽  
...  

A substantial number of Orange Carotenoid Protein (OCP) studies have aimed to describe the evolution of singlet excited states leading to the formation of photo-activated form, OCPR. The most recent one suggests that three picosecond-lived excited states are formed after the sub-100 fs decay of the initial S2 state. The S* state which has the longest reported lifetime of a few to tens of picoseconds is considered to be the precursor of the first red photoproduct P1. Here, we report the ultrafast photo-dynamics of the OCP from Synechocystis PCC 6803, carried out using Visible-NIR femtosecond time-resolved absorption spectroscopy as a function of the excitation pulse power and wavelength. We found that a carotenoid radical cation can form even at relatively low excitation power, obscuring the determination of photo-activation yields for P1. Moreover, the comparison of green (540 nm) and blue (470 nm) excitations revealed the existence of an hitherto uncharacterized excited state, denoted as S~, living a few tens of picoseconds and formed only upon 470 nm excitation. Since neither the P1 quantum yield nor the photo-activation speed over hundreds of seconds vary under green and blue continuous irradiation, this S~ species is unlikely to be involved in the photo-activation mechanism leading to OCPR. We also addressed the effect of His-tagging at the N- or C-termini on excited state photo-physical properties. Differences in spectral signatures and lifetimes of the different excited states were observed, at variance with the usual assumption that His-tagging hardly influences protein dynamics and function. Altogether our results advocate for careful consideration of the excitation power and His-tag position when comparing the photo-activation of different OCP variants, and beg to revisit the notion that S* is the precursor of photoactivated OCPR.


2021 ◽  
Vol 12 ◽  
Author(s):  
D. Isabel Petrescu ◽  
Preston L. Dilbeck ◽  
Beronda L. Montgomery

The orange carotenoid protein (OCP) family of proteins are light-activated proteins that function in dissipating excess energy absorbed by accessory light-harvesting complexes, i.e., phycobilisomes (PBSs), in cyanobacteria. Some cyanobacteria contain multiple homologs of the OCP-encoding gene (ocp). Fremyella diplosiphon, a cyanobacterium studied for light-dependent regulation of PBSs during complementary chromatic acclimation (CCA), contains several OCP homologs – two full-length OCPs, three Helical Carotenoid Proteins (HCPs) with homology to the N-terminus of OCP, and one C-terminal domain-like carotenoid protein (CCP) with homology to the C-terminus of OCP. We examined whether these homologs are distinctly regulated in response to different environmental factors, which could indicate distinct functions. We observed distinct patterns of expression for some OCP, HCP, and CCP encoding genes, and have evidence that light-dependent aspects of ocp homolog expression are regulated by photoreceptor RcaE which controls CCA. RcaE-dependent transcriptional regulator RcaC is also involved in the photoregulation of some hcp genes. Apart from light, additional environmental factors associated with cellular redox regulation impact the mRNA levels of ocp homologs, including salt, cold, and disruption of electron transport. Analyses of conserved sequences in the promoters of ocp homologs were conducted to gain additional insight into regulation of these genes. Several conserved regulatory elements were found across multiple ocp homolog promoters that potentially control differential transcriptional regulation in response to a range of environmental cues. The impact of distinct environmental cues on differential accumulation of ocp homolog transcripts indicates potential functional diversification of this gene family in cyanobacteria. These genes likely enable dynamic cellular protection in response to diverse environmental stress conditions in F. diplosiphon.


2021 ◽  
Author(s):  
Maria Agustina Dominguez-Martin ◽  
Paul V Sauer ◽  
Markus Sutter ◽  
Henning Kirst ◽  
David Bina ◽  
...  

Photoprotection is an essential mechanism in photosynthetic organisms to balance the harvesting of light energy against the risks of photodamage. In cyanobacteria, photoprotective non-photochemical quenching relies on the interaction between a photoreceptor, the Orange Carotenoid Protein (OCP), and the antenna, the phycobilisome (PBS). Here we report the first structure of the OCP-PBS complex at 2.7 Å overall resolution obtained by cryo-electron microscopy. The structure shows that the 6.2 MDa PBS is quenched by four 34 kDa OCP organized as two dimers. The complex also reveals that the structure of the active form of the OCP is drastically different than its resting, non-quenching form, with an ~60 Å displacement of its regulatory domain. These results provide a high-resolution blueprint of the structural basis of the protective quenching of excess excitation energy that enables cyanobacteria to harvest light energy and fix CO2 across environmentally diverse and dynamic surface of our planet.


2021 ◽  
Author(s):  
Mahmoud Sharawy ◽  
Natalia B. Pigni ◽  
Eric R. May ◽  
José A. Gascón

The Orange Carotenoid Protein (OCP) is responsible for nonphotochemical quenching (NPQ) in cyanobacteria, a defense mechanism against potentially damaging effects of excess light conditions. This soluble two-domain protein undergoes profound conformational changes upon photoactivation, involving translocation of the ketocarotenoid inside the cavity followed by domain separation. Domain separation is a critical step in the photocycle of OCP because it exposes the N-terminal domain (NTD) to perform quenching of the phycobilisomes. Many details regarding the mechanism and energetics of OCP domain separation remain unknown. In this work, we apply metadynamics to elucidate the protein rearrangements that lead to the active, domain-separated, form of OCP. We find that translocation of the ketocarotenoid canthaxanthin has a profound effect on the energetic landscape and that domain separation only becomes favorable following translocation. We further explore, characterize, and validate the free energy surface (FES) using equilibrium simulations initiated from different states on the FES. Through pathway optimization methods, we characterize the most probable path to domain separation and reveal the barriers along that pathway. We find that the free energy barriers are relatively small (<5 kcal/mol), but the overall estimated kinetic rate is consistent with experimental measurements (>1 ms). Overall, our results provide detailed information on the requirement for canthaxanthin translocation to precede domain separation and an energetically feasible pathway to dissociation.


2021 ◽  
Vol 118 (38) ◽  
pp. e2111300118
Author(s):  
Christophe Six ◽  
Morgane Ratin ◽  
Dominique Marie ◽  
Erwan Corre

The most ubiquitous cyanobacteria, Synechococcus, have colonized different marine thermal niches through the evolutionary specialization of lineages adapted to different ranges of temperature seawater. We used the strains of Synechococcus temperature ecotypes to study how light utilization has evolved in the function of temperature. The tropical Synechococcus (clade II) was unable to grow under 16 °C but, at temperatures >25 °C, induced very high growth rates that relied on a strong synthesis of the components of the photosynthetic machinery, leading to a large increase in photosystem cross-section and electron flux. By contrast, the Synechococcus adapted to subpolar habitats (clade I) grew more slowly but was able to cope with temperatures <10 °C. We show that growth at such temperatures was accompanied by a large increase of the photoprotection capacities using the orange carotenoid protein (OCP). Metagenomic analyzes revealed that Synechococcus natural communities show the highest prevalence of the ocp genes in low-temperature niches, whereas most tropical clade II Synechococcus have lost the gene. Moreover, bioinformatic analyzes suggested that the OCP variants of the two cold-adapted Synechococcus clades I and IV have undergone evolutionary convergence through the adaptation of the molecular flexibility. Our study points to an important role of temperature in the evolution of the OCP. We, furthermore, discuss the implications of the different metabolic cost of these physiological strategies on the competitiveness of Synechococcus in a warming ocean. This study can help improve the current hypotheses and models aimed at predicting the changes in ocean carbon fluxes in response to global warming.


2021 ◽  
Author(s):  
Mahmoud Sharawy ◽  
Natalia B. Pigni ◽  
Eric R. May ◽  
José A. Gascón

2021 ◽  
Author(s):  
Mahmoud Sharawy ◽  
Natalia B. Pigni ◽  
Eric R. May ◽  
José A. Gascón

In this work, we have modeled a fundamental part of the defense mechanism of Cyanobacteria against damaging effects of excess light conditions. This mechanism is part of the photoactivation cycle in the Orange Carotenoid Protein (OCP), which involves the separation of protein domains triggered by chromophore translocation. Using carefully designed metadynamics simulations, we have discovered the structural rearrangements along an energetically favorable pathway to the activated state. The structural rearrangement of OCP along its activation path has been a long-standing question, only answered now by our work.<br>


Sign in / Sign up

Export Citation Format

Share Document