scholarly journals Heterogeneity of rat liver mitochondrial fractions and the effect of tri-iodothyronine on their protein turnover

1970 ◽  
Vol 118 (1) ◽  
pp. 111-121 ◽  
Author(s):  
S. S. Katyare ◽  
P. Fatterpaker ◽  
A. Sreenivasan

1. Rat liver mitochondria were separated into heavy, light and fluffy fractions by differential centrifugation under standard conditions. 2. All mitochondrial fractions possessed soluble as well as membrane-bound enzymes typical of mitochondria. 3. The heavy fraction represented the stable mitochondrial structures and the fluffy particles appear to be loosely coupled. 4. The light mitochondrial fraction lacked the ability of coupled phosphorylation. 5. A study of mobility and isoelectric pH indicated a similarity in the basic membrane structure of all the mitochondrial fractions. 6. The turnover rates of proteins in the heavy and fluffy particles were almost identical; however, this rate was rapid for the light mitochondrial fraction. 7. On treatment with 3,3′,5-tri-iodo-l-thyronine, succinoxidase activity was maximally stimulated much earlier in the light mitochondrial fraction than in the heavy fraction. The activity of the fluffy particles, however, remained almost unaffected. 8. Malate dehydrogenase activity in all the mitochondrial fractions was stimulated only at 40h after tri-iodothyronine treatment. 9. The pattern of incorporation of dl-[1-14C]leucine in vivo in the tri-iodothyronine-treated animals indicated a rapid initial incorporation and high synthetic ability of the light mitochondrial fraction. 10. The turnover pattern of proteins of the mitochondrial fractions from animals receiving repeated doses of tri-iodothyronine was remarkably different from the normal pattern and suggested that preformed soluble protein units may be incorporated in the light mitochondrial fraction during maturation to form the stable heavy mitochondria. 11. The amount of light-mitochondrial proteins decreased by 40% on thyroidectomy and increased by 160% on treatment with tri-iodothyronine. 12. The possible significance of these results is discussed in relation to mitochondrial genesis.

1993 ◽  
Vol 46 (3) ◽  
pp. 401-413 ◽  
Author(s):  
C. Demonacos ◽  
N.C. Tsawdaroglou ◽  
R. Djordjevic-Markovic ◽  
M. Papalopoulou ◽  
V. Galanopoulos ◽  
...  

1993 ◽  
Vol 71 (3-4) ◽  
pp. 183-189 ◽  
Author(s):  
Amy Y. P. Mok ◽  
Gordon E. McDougall ◽  
William C. McMurray

CDP-diacylglycerol for polyglycerophosphatide biogenesis can be synthesized within rat liver mitochondria. Contamination by microsomal membranes cannot account for the CDP-diacylglycerol synthesis found in the mitochondria. Phosphatidic acid from egg lecithin was the best substrate for the synthesis of CDP-diacylglycerol in both subcellular fractions. Concentration curves for CTP and Mg2+ differed for the two subcellular fractions. Microsomal CDP-diacylglycerol synthase was specifically stimulated by the nucleotide GTP; this stimulatory effect by GTP was not observed in the mitochondrial fraction. By comparison, the microsomal enzyme was more sensitive towards sulfhydryl inhibitors than the mitochondrial enzyme. The enzymes could be solubilized from the membrane fractions using 3-[(cholamidopropyl)dimethylammonio]-1-propanesulfonate, and the detergent-soluble activity could be partially restored by addition of phospholipids. Based on the differences in properties, it was concluded that there are two distinct enzyme localizations for CDP-diacylglycerol synthesis in mitochondria and microsomes from rat liver.Key words: CDP-diacylglycerol, synthase, phosphatidic acid, mitochondria, microsomes, solubilization.


1978 ◽  
Vol 176 (3) ◽  
pp. 705-714 ◽  
Author(s):  
Veronica Prpić ◽  
Terry L. Spencer ◽  
Fyfe L. Bygrave

1. Mitochondria isolated from rat liver by centrifugation of the homogenate in buffered iso-osmotic sucrose at between 4000 and 8000g-min, 1h after the administration in vivo of 30μg of glucagon/100g body wt., retain Ca2+ for over 45min after its addition at 100nmol/mg of mitochondrial protein in the presence of 2mm-Pi. In similar experiments, but after the administration of saline (0.9% NaCl) in place of glucagon, Ca2+ is retained for 6–8min. The ability of glucagon to enhance Ca2+ retention is completely prevented by co-administration of 4.2mg of puromycin/100g body wt. 2. The resting rate of respiration after Ca2+ accumulation by mitochondria from glucagon-treated rats remains low by contrast with that from saline-treated rats. Respiration in the latter mitochondria increased markedly after the Ca2+ accumulation, reflecting the uncoupling action of the ion. 3. Concomitant with the enhanced retention of Ca2+ and low rates of resting respiration by mitochondria from glucagon-treated rats was an increased ability to retain endogenous adenine nucleotides. 4. An investigation of properties of mitochondria known to influence Ca2+ transport revealed a significantly higher concentration of adenine nucleotides but not of Pi in those from glucagon-treated rats. The membrane potential remained unchanged, but the transmembrane pH gradient increased by approx. 10mV, indicating increased alkalinity of the matrix space. 5. Depletion of endogenous adenine nucleotides by Pi treatment in mitochondria from both glucagon-treated and saline-treated rats led to a marked diminution in ability to retain Ca2+. The activity of the adenine nucleotide translocase was unaffected by glucagon treatment of rats in vivo. 6. Although the data are consistent with the argument that the Ca2+-translocation cycle in rat liver mitochondria is a target for glucagon action in vivo, they do not permit conclusions to be drawn about the molecular mechanisms involved in the glucagon-induced alteration to this cycle.


1974 ◽  
Vol 147 (3) ◽  
pp. 803-806 ◽  
Author(s):  
J. N. Williams ◽  
S. L. Thorp

1985 ◽  
Vol 231 (2) ◽  
pp. 343-347 ◽  
Author(s):  
V A Zammit ◽  
C G Corstorphine

Specific binding of [2-14C] malonyl-CoA to rat liver mitochondria was measured at different temperatures and after various periods of time of exposure of the mitochondria to the ligand. Incubation of mitochondria at 37 degrees C in the absence of malonyl-CoA resulted in a decrease in their ability to bind malonyl-CoA at all concentrations tested (up to 55 microM). However, incubation of mitochondria in the presence of malonyl-CoA resulted in the loss of the binding only by a low-affinity component. By contrast, there was an increase in the binding that occurred at low, physiological, concentrations of malonyl-CoA. These differences in the response of the two binding components to incubation conditions were used to obtain quantitative data about their respective saturation kinetics. Evidence was obtained that, whereas the high-affinity component approached saturation hyperbolically with respect to malonyl-CoA concentration, the low-affinity component had sigmoidal characteristics. The concentrations of malonyl-CoA required to half-saturate the two components were 2-3 microM and 30 microM for the high- and low-affinity components respectively. Evidence was also obtained for the involvement of a temperature-dependent transition, that occurred at around 25 degrees C, in the modulation of malonyl-CoA binding to the mitochondria. The possible physiological roles of the two components of malonyl-CoA binding in relation to the regulation of overt carnitine palmitoyltransferase (CPT I) activity in vivo are discussed.


1986 ◽  
Vol 233 (1) ◽  
pp. 283-286 ◽  
Author(s):  
M C Duque-Magalhães ◽  
P Régnier

Rat liver mitochondrial fractions corresponding to four morphological structures (matrix, inner membrane, intermembrane space and outer membrane) contain proteinases that cleave casein components at different rates. Proteinases of the intermembrane space preferentially cleave kappa-casein, whereas the proteinases of the outer membrane, inner membrane and matrix fractions degrade alpha S1-casein more rapidly. Electrophoretic separation of the degradation products of alpha S1-casein and kappa-casein in polyacrylamide gels shows that different polypeptides are produced when the substrate is degraded by the matrix, by both membranes and by the intermembrane-space fraction. Some of the degradation products resulting from incubation of the caseins with the mitochondrial fractions are probably the result of digestion by contaminating lysosomal proteinase(s). The matrix has a high peptidase activity, since glucagon, a small peptide, is very rapidly degraded by this fraction. These observations strongly suggest that distinct proteinases, with different specificities, are associated respectively with the intermembrane space and with both membrane fractions.


Sign in / Sign up

Export Citation Format

Share Document