peptidase activity
Recently Published Documents


TOTAL DOCUMENTS

526
(FIVE YEARS 78)

H-INDEX

45
(FIVE YEARS 3)

2022 ◽  
pp. 1-16
Author(s):  
Rui Fu ◽  
Xinxia Luo ◽  
Yan Ding ◽  
Shiwen Guo

<b><i>Objective:</i></b> Methyltransferase-like 7B (METTL7B) is a member of methyltransferase-like family. Little is known about the exact role of METTL7B in cancer. This study aims to investigate the role of METTL7B in gliomas. <b><i>Methods:</i></b> The expression of METTL7B in glioma and adjacent normal tissues were examined by using TCGA, Chinese Glioma Genome Atlas (CGGA) database, and clinical tissues. <b><i>Results:</i></b> The results showed that METTL7B was highly expressed in glioma. Patients with high levels of METTL7B usually had poor survival in glioma, especially in low-grade glioma (LGG). Data from CGGA showed that METTL7B was an independent risk factor of glioma and can be used to evaluate the survival time of glioma patients. Hypomethylation in the METTL7B CpG islands was lower in LGG, and all the hypomethylated METTL7B islands were correlated with poor LGG survival. Furthermore, METTL7B levels were correlated with high numbers of tumor infiltrated immune cells in glioma, especially in LGG. ). Gene Set Enrichment Analysis found METTL7B was correlated with leukocyte proliferation, T-cell proliferation, peptidase activity, lymphocyte activation, etc. TCGA and CGGA database analysis showed that there were 1,546 and 1,117 genes that had a synergistic effect with METTL7B in glioma, respectively, and there were 372 genes overlapped between the 2 groups, including PD-L1. Data from clinical tissues also showed PD-L1 was highly expressed in glioma tissues and was positively correlated with METTL7B. <b><i>Conclusion:</i></b> Our study suggested that METTL7B was a potential prognostic biomarker for glioma and other cancers, and it may act as an oncogenic driver and may be a potential therapeutic target in human cancer, especially in LGG.


2022 ◽  
Author(s):  
Pete Heinzelman ◽  
Philip A Romero

Mutants of the Angiotensin Converting-Enzyme 2 (ACE2) carboxypeptidase possessing enhanced hydrolytic activity and specificity hold potential to beneficially modulate the Angiotensin receptor (ATR) therapeutic axis with increased efficacy and reduced potential side effects relative to wild type ACE2. In pursuing this goal, we established a yeast display-based liquid chromatography screen that enabled use of directed evolution to identify ACE2 mutants with improved target peptide substrate, Angiotensin-II (Ang-II), activity and specificity relative to Apelin-13, an off-target peptide substrate. Screening yeast-displayed ACE2 active site residue saturation mutant libraries revealed three substitution-tolerant positions that can be mutated to enhance ACE2's activity profile. Double mutant libraries combining substitutions at these positions, M360, T371 and Y510, yielded candidate improved ACE2 mutants that were recombinantly expressed and purified at 1 mg/L yield and > 90% homogeneity. Relative to wild type, the leading mutant, T371L/Y510Ile, has seven-fold increased kcat toward Ang-II and six-fold decreased kcat/Km for Apelin-13 hydrolysis. In single substrate hydrolysis assays featuring physiologically relevant substrate concentrations T371L/Y510Ile hydrolyzes more Ang-II than wild type with concomitant Ang-II:Apelin-13 specificity improvements reaching 30-fold. Additionally, T371L/Y510Ile hydrolyzed Ang-II at rates greater than wild type, with Apelin-13 hydrolysis reductions of up to 80 percent, in multiplex assays containing a mixture of peptides relevant to the ATR therapeutic axis. Our efforts have delivered ATR axis-acting therapeutic candidates with relevance to established and unexplored ACE2 therapeutic applications and demonstrate the feasibility of developing ACE2 variants for use in biomedical contexts unrelated to the ATR axis such as localized activation of peptide-based prodrugs.


2021 ◽  
Vol 11 (4) ◽  
pp. 609-617
Author(s):  
Francesca Forli ◽  
Luca Bruschini ◽  
Beatrice Franciosi ◽  
Roberta Battini ◽  
Gemma Marinella ◽  
...  

Perrault syndrome (PRLTS) is a rare autosomal recessive disorder characterised by ovarian failure in females and sensorineural hearing loss (SNHL) in both genders. In the present paper we describe a child affected by PRLTS3, due to CLPP homozygous mutations, presenting auditory neuropathy spectrum disorder (ANSD) with bilateral progressive SNHL. This is the first case reported in the literature of an ANSD in PRLTS3. CLPP is a nuclear encoded mitochondrial protease directed at the mitochondrial matrix. It is encoded on chromosome 19. This protease participates in mitochondrial protein quality control by degrading misfolded or damaged proteins, thus maintaining the normal metabolic function of the cell. In PRLTS3, the peptidase activity of CLPP is suppressed. Neurological impairments involved in PRLTS3 suggest that the pathogenic mutations in CLPP might trigger a mitochondrial dysfunction. A comprehensive description of the clinical and audiological presentation, as well as the issues related to cochlear implant (CI) procedure and the results, are addressed and discussed. A brief review of the literature on this topic is also provided.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3329-3329
Author(s):  
Yue Feng ◽  
Yulia Jitkova ◽  
Harjeet Soor ◽  
Suzanne Trudel ◽  
Kaitlin Lees ◽  
...  

Abstract The mitochondrial serine protease, ClpXP, regulates the integrity of the respiratory chain by degrading damaged and/or misfolded proteins. This protease is over-expressed in a subset of AML and inhibiting or hyperactivating it kills leukemic cells and stem cells in vitro and in vivo. Yet, it is unknown how the mitochondrial ClpXP recognizes proteins for degradation. In Bacillus subtilis, the bacterial ClpXP homologue recognizes proteins tagged with phospho-arginine for degradation. To determine if phosphorylated amino acids influence mitochondrial ClpXP-mediated protein degradation, we incubated recombinant ClpXP with its unnatural substrate FITC-casein and increasing concentrations of phospho-serine (pSer), phospho-threonine (pThr), phospho-arginine (pArg), or phospho-tyrosine (pTyr) in a cell-free assay and measured release of fluorogenic FITC. In a dose-dependent manner, pSer and pThr free amino acids inhibited casein cleavage by ClpXP while pTyr, pArg, and the dephosphorylated amino acids had no effect on ClpXP activity. Likewise, ApSA, RRApSVA, and ApTA peptides inhibited ClpXP enzyme activity, while the non-phosphorylated version (ASA, RRASVA, and ATA) had no effect. Next, we tested whether the phosphorylation state of full length proteins would influence their degradation by ClpXP. Using gel-based cell-free assays, the phosphorylation enriched α-casein and β-casein were degraded by recombinant ClpXP. In contrast, κ-casein with low levels of phosphorylation and dephosphorylated α-casein were not cleaved by ClpXP. As ClpX is an AAA ATPase, we asked if pSer and pThr acted on the ATPase of the enzyme. pSer and pThr did not inhibit the ATPase activity of ClpX. We also measured the effect of pSer and pThr on the peptidase activity of ClpP alone without its regulatory subunit ClpX. Neither pSer or pThr inhibited ClpP peptidase activity. We investigated if pSer and pThr could bind to ClpX. Using thermal shift binding assays, we demonstrated that pSer and pThr but not pTyr and pArg bound ClpX and none of the phosphorylated amino acids bound ClpP. Similarly, ApSA, RRApSVA, and ApTA peptides bound ClpX, while the non-phosphorylated ASA, RRASVA, and ATA did not bind ClpX. Previously we showed that ClpP interacted with respiratory chain complex II subunit SDHA, and ClpP knockdown in AML cells impaired respiratory chain complex II activity and reactive oxygen species increased. Therefore, we tested how ClpXP knockdown impacts levels of phospho-serine SDHA. Using shRNA, we knocked down ClpP and ClpX individually in OCI-AML2 cells. After target knockdown, we pulled down pSer proteins and then probed for SDHA. Knockdown of both ClpP and ClpX increased the abundance of serine phosphorylated SDHA comparing to control, suggesting that ClpXP degrades serine phosphorylated SDHA. Finally, as a chemical approach, we generated small molecules that mimic pSer and demonstrated that they inhibited ClpXP-mediated degradation of FITC-casein and bound ClpX with a potency similar to pSer. In summary, we discovered that ClpX binds pSer and pThr and phosphorylation of these amino acids mark proteins for degradation by the ClpXP mitochondrial protease. This work highlights a new strategy to develop inhibitors of ClpXP for the treatment of AML. Disclosures Schimmer: Takeda Pharmaceuticals: Consultancy, Research Funding; Medivir AB: Research Funding; Otsuka Pharmaceuticals: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Jazz: Consultancy, Honoraria; UHN: Patents & Royalties.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12349
Author(s):  
Jianhua Chen ◽  
Hao Xu ◽  
Jian Zhang ◽  
Shengjun Dong ◽  
Quangang Liu ◽  
...  

Background The phenomenon of male sterility widely occurs in Prunus sibirica and has a serious negative impact on yield. We identified the key stage and cause of male sterility and found differentially expressed genes related to male sterility in Prunus sibirica, and we analyzed the expression pattern of these genes. This work aimed to provide valuable reference and theoretical basis for the study of reproductive development and the mechanisms of male sterility in Prunus sibirica. Method The microstructures of male sterile flower buds and male fertile flower buds were observed by paraffin section. Transcriptome sequencing was used to screen genes related to male sterility in Prunus sibirica. Quantitative real-time PCR analysis was performed to verify the transcriptome data. Results Anther development was divided into the sporogenous cell stage, tetrad stage, microspore stage, and pollen maturity stage. Compared with male fertile flower buds, in the microspore stage, the pollen sac wall tissue in the male sterile flower buds showed no signs of degeneration. In the pollen maturity stage, the tapetum and middle layer were not fully degraded, and anther development stopped. Therefore, the microspore stage was the key stage for anther abortion , and the pollen maturity stage was the post stage for anther abortion. A total of 4,108 differentially expressed genes were identified by transcriptome analysis. Among them, 1,899 were up-regulated, and 2,209 were down-regulated in the transcriptome of male sterile flower buds. We found that “protein kinase activity”, “apoptosis process”, “calcium binding”, “cell death”, “cytochrome c oxidase activity”, “aspartate peptidase activity”, “cysteine peptidase activity” and other biological pathways such as “starch and sucrose metabolism” and “proteasome” were closely related to male sterility in Prunus sibirica. A total of 331 key genes were preliminarily screened. Conclusion The occurrence of male sterility in Prunus sibirica involved many biological processes and metabolic pathways. According to the results of microstructure observations, related physiological indexes determination and transcriptome analysis, we reveal that the occurrence of male sterility in Prunus sibirica may be caused by abnormal metabolic processes such as the release of cytochrome c in the male sterile flower buds, the imbalance of the antioxidant system being destroyed, and the inability of macromolecular substances such as starch to be converted into soluble small molecules at the correct stage of reproductive development, resulting in energy loss. As a result, the tapetum cannot be fully degraded, thereby blocking anther development, which eventually led to the formation of male sterility.


2021 ◽  
Author(s):  
Hsu-Feng Chu ◽  
Shu-Chun Cheng ◽  
Chiao-Yin Sun ◽  
Chi-Yuan Chou ◽  
Ta-Hsien Lin ◽  
...  

Coronaviral papain-like proteases (PLpros) are essential enzymes that mediate not only the proteolytic processes of viral polyproteins during virus replication, but also the deubiquitination and deISGylation of cellular proteins that attenuate host innate immune responses. Therefore, PLpros are attractive targets for antiviral drug development. Here we report the crystal structure of the papain-like protease 2 (PLP2) of porcine epidemic diarrhea virus (PEDV) in complex with ubiquitin (Ub). The X-ray structural analyses reveal that PEDV PLP2 interacts with Ub substrate mainly through the Ub core region and C-terminal tail. Mutations of Ub-interacting residues resulted in moderately or completely abolished deubiquitinylating function of PEDV PLP2. In addition, our analyses also indicate that the two residues-extended blocking loop 2 at the S4 subsite contributes to the substrate selectivity and binding affinity of PEDV PLP2. Furthermore, the PEDV PLP2 Glu99 residue, conserved in alpha-CoV PLpros, was found to govern the preference of a positively charged P4 residue of peptidyl substrates. Collectively, our data provided structure-based information for substrate binding and selectivity of PEDV PLP2. These findings may help us gain insights into the deubiquitinating and proteolytic functions of PEDV PLP2 from a structural perspective. Importance Current challenges in CoVs include a comprehensive understanding of mechanistic effects of associated enzymes, including the 3C-like and papain-like proteases. We have previously reported that the PEDV PLP2 exhibits a broader substrate preference, superior DUB function, and inferior peptidase activity. However, the structure basis for these functions remains largely unclear. Here, we show the high-resolution X-ray crystal structure of PEDV PLP2 in complex with Ub. Integrated structural and biochemical analyses revealed: (i) three Ub-core interacting residues are essential for DUB function, (ii) two-residue-elongated blocking loop 2 regulates substrate selectivity, and (iii) a conserved glutamate residue governs the substrate specificity of PEDV PLP2. Collectively, our findings provide not only the structural insights to the catalytic mechanism of PEDV PLP2 but also a model for developing antiviral strategies.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4946
Author(s):  
Katharina Dendl ◽  
Stefan Koerber ◽  
Clemens Kratochwil ◽  
Jens Cardinale ◽  
Rebecca Finck ◽  
...  

A fibroblast activation protein (FAP) is an atypical type II transmembrane serine protease with both endopeptidase and post-proline dipeptidyl peptidase activity. FAP is overexpressed in cancer-associated fibroblasts (CAFs), which are found in most epithelial tumors. CAFs have been implicated in promoting tumor cell invasion, angiogenesis and growth and their presence correlates with a poor prognosis. However, FAP can generally be found during the remodeling of the extracellular matrix and therefore can be detected in wound healing and benign diseases. For instance, chronic inflammation, arthritis, fibrosis and ischemic heart tissue after a myocardial infarction are FAP-positive diseases. Therefore, quinoline-based FAP inhibitors (FAPIs) bind with a high affinity not only to tumors but also to a variety of benign pathologic processes. When these inhibitors are radiolabeled with positron emitting radioisotopes, they provide new diagnostic and prognostic tools as well as insights into the role of the microenvironment in a disease. In this respect, they deliver additional information beyond what is afforded by conventional FDG PET scans that typically report on glucose uptake. Thus, FAP ligands are considered to be highly promising novel tracers that offer a new diagnostic and theranostic potential in a variety of diseases.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256538
Author(s):  
Masanori Iwasaki ◽  
Michihiko Usui ◽  
Wataru Ariyoshi ◽  
Keisuke Nakashima ◽  
Yoshie Nagai-Yoshioka ◽  
...  

Objectives N-benzoyl-DL-arginine peptidase (trypsin-like peptidase) is specifically produced by certain strains of periodontitis-associated bacteria. We aimed to examine the effectiveness of an objectively quantified trypsin-like peptidase activity assay (TLP-AA) for detecting severe periodontitis. Methods The study population included 347 adults (108 men and 239 women; average age, 43.3 years) who underwent a full-mouth periodontal examination. Specimens for the TLP-AA were obtained using tongue swabs. Using a color reader, the TLP-AA results were obtained as a* values, with higher positive a* values indicating an increased intense enzymatic activity. The predictive validity of the TLP-AA results for severe periodontitis was assessed using receiver operating characteristic curve analysis and the periodontitis case definition provided by the Centers for Disease Control and Prevention/American Academy of Periodontology as the gold standard. Furthermore, multivariable logistic regression analyses were performed to predict severe periodontitis using the TLP-AA results and health characteristics, as the exposure variables. Results Severe periodontitis was observed in 5.2% of the participants. TLP-AA had high diagnostic accuracy for severe periodontitis, with an area under the curve of 0.83 (95% confidence interval [CI]: 0.75–0.92). The cut-off score for the a* value that best differentiated individuals with severe periodontitis was 0.09, with a sensitivity of 83% and specificity of 77%. Multivariable logistic regression analyses revealed that the TLP-AA results were significantly associated with severe periodontitis after adjusting for health characteristics (adjusted odds ratios: 1.90 [95% CI: 1.37–2.62] for the a* value). Conclusions Objectively quantified TLP-AA results are potentially useful for detecting severe periodontitis in epidemiological surveillance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Li-Ting Wang ◽  
Abira Rajah ◽  
Claire M. Brown ◽  
Luke McCaffrey

AbstractPolarized epithelial cells can organize into complex structures with a characteristic central lumen. Lumen formation requires that cells coordinately orient their polarity axis so that the basolateral domain is on the outside and apical domain inside epithelial structures. Here we show that the transmembrane aminopeptidase, CD13, is a key determinant of epithelial polarity orientation. CD13 localizes to the apical membrane and associates with an apical complex with Par6. CD13-deficient cells display inverted polarity in which apical proteins are retained on the outer cell periphery and fail to accumulate at an intercellular apical initiation site. Here we show that CD13 is required to couple apical protein cargo to Rab11-endosomes and for capture of endosomes at the apical initiation site. This role in polarity utilizes the short intracellular domain but is independent of CD13 peptidase activity.


2021 ◽  
Author(s):  
Yue Qi ◽  
Yue Wang

Abstract Background: This study aimed to explore the expression of Family with sequence similarity 83 (FAM83) members in cervical cancer, its prognostic value, related signaling pathways, regulatory mechanisms, and immune infiltration. It’s of great value to explore the potential role of FAM83 family in cervical cancer and provide a new scientific basis for targeted therapy.Methods: The expression, gene mutations and prognostic value of FAM83 family members in cervical cancer were analyzed by various bioinformatics tools and databases. We further explored the interaction regulation network and immune infiltration between FAM83 family members and their closely related genes through a series of databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) enrichment were also conducted.Results: This study showed that the expression levels of FAM83A/B/C/D/E/F/G/H gene were upregulated in cervical cancer, the expression of FAM83B/C/D/E/F/G/H were related to tumor stages of cervical cancer, and the promoter methylation of FAM83A/D/E/F/G genes in cervical cancer were lower than those in normal tissues. What’s more, high expression of FAM83A, FAM83B, and FAM83H mRNA was associated with shortened overall survival. GO results showed that FAM83A, FAM83B, and FAM83H and their closely related genes can play an important role in cell-cell junction, calcium-dependent protein binding, regulation of peptidase activity, inflammatory response. KEGG analysis results showed that FAM83A, FAM83B, and FAM83H and their closely related genes were significantly enriched in cancer pathways, estrogen signaling pathway, MAPK signaling pathway. Furthermore, FAM83A, FAM83B, and FAM83H are all closely related to lymphocytes (Tcm_CD4, Tcm_CD8, and neutrophils) and immunomodulators (TGFBR1, TGFB1, and TNFSF9).Conclusions: With multiple databases, we found that the high expression of FAM83A, FAM83B, and FAM83H were associated with the shortened survival time and poor prognosis in patients with cervical cancer, and also closely correlated with lymphocytes and immune infiltration, suggesting that FAM83A, FAM83B, and FAM83H played an important role in the occurrence, development, malignant biological behavior, and immune infilatration of cervical cancer, which provides an important theoretical basis for early diagnosis and targeted therapy for cervical cancer.


Sign in / Sign up

Export Citation Format

Share Document