egg lecithin
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 2)

H-INDEX

32
(FIVE YEARS 0)

Physchem ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 215-224
Author(s):  
Dipankar Roy ◽  
Devjyoti Dutta ◽  
Andriy Kovalenko

The Three-Dimensional Reference Interaction Site Model (3D-RISM) with Kovalenko−Hirata (KH) closure is applied to calculate the 1,9-Decadiene/Water partition coefficients for a diverse class of compounds. The liquid state of 1,9-Decadiene is represented with the united atom TraPPE force field parameters. The 3D-RISM-KH computed partition functions are in good agreement with the experimental results. Our computational scheme can be used for a quantitative structure partitioning prediction for decadiene-water system, which has been used in membrane-mimicking of the egg-lecithin/water permeability experiments.





2020 ◽  
Vol 85 (4) ◽  
pp. 1213-1222
Author(s):  
Hanna Salminen ◽  
Sonja Bischoff ◽  
Jochen Weiss






Biomeditsina ◽  
2019 ◽  
pp. 49-58
Author(s):  
I. L. Kotovich ◽  
Zh. A. Rutkovskaya ◽  
A. D. Taganovich

Oxidative stress is considered to be a factor leading to lung damage in premature infants. The aim of this study was to investigate the effect of inhaled antioxidants incorporated into egg lecithin liposomes on the indicators of oxidative stress in the lungs of newborn guinea pigs under experimental hyperoxia (3 days). Bronchoalveolar lavage fl uid (BALF) was used as a material for the study. Under hyperoxia exposure, inhalation of liposomes containing N-acetylcysteine and alpha-tocopherol contributed to the suppression of the reactive oxygen species production by cells, normalization of glutathione peroxidase activity and carbonyls content, while not affecting the level of diene conjugates in BALF. The introduction of retinoid-containing liposomes (retinol and retinoic acid) under hyperoxia was accompanied by normalization of glutathione peroxidase activity as well as the content of protein oxidation products in BALF, while the generation of reactive oxygen species remained enhanced, and the diene conjugates and thiobarbituric acid reactive products exceeded the levels in animals exposed to hyperoxia alone. Thus, the inhaled liposomes containing retinoids and egg lecithin exhibit not only anti-, but also a prooxidant effect in the lungs under hyperoxia exposure, unlike the liposomal forms of N-acetylcysteine and alpha-tocopherol.



Author(s):  
ARVIND GANNIMITTA ◽  
PRATHIMA SRINIVAS ◽  
VENKATESHWAR REDDY A ◽  
PEDIREDDI SOBHITA RANI

Objective: The main objective of this study was to prepare and evaluate the nanocrystal formulation of docetaxel. Methods: Docetaxel nanocrystals were formulated to improve the water solubility. Docetaxel nanocrystals were prepared by nanoprecipitation method using Tween 80, egg lecithin, and povidone C-12 as stabilizers and poly(lactic-co-glycolic acid) (PLGA) as polymer in acceptable limits. A total of 16 formulations were prepared by changing stabilizer and polymer ratios. The prepared nanocrystals were characterized by particle size, zeta potential, crystalline structure, surface morphology, assay, saturation solubility, and in vitro drug release. Results: Based on particle size, polydispersity index, and zeta potential data, four formulations were optimized. The formulation containing Tween 80 as stabilizer has shown lowest particle size and better drug release than the formulations containing egg lecithin and povidone C-12 as stabilizers. The formulation containing Tween 80 and PLGA has shown still lower sized particles than the Tween 80 alone and exhibited prolonged sustained drug release. The release kinetics of formulations containing Tween 80 and PLGA followed zero-order release kinetics and formulations containing egg lecithin and povidone C-12 followed Higuchi diffusion (non-Fickian). Conclusion: From the study, we concluded that as the type and concentration of stabilizer changed the size and shape of the crystals were also changed and the formulations showed sustained drug release with non-Fickian diffusion.



Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 236 ◽  
Author(s):  
Xinli Liang ◽  
Xulong Chen ◽  
Guowei Zhao ◽  
Tao Tang ◽  
Wei Dong ◽  
...  

Imperatorin is a chemical compound belonging to the linear furanocoumarins. Imperatorin is attracting considerable attention because of its antitumor, antibacterial, anti-inflammatory, and anticoagulant activities, inhibition of myocardial hypertrophy, and other pharmacological efficacies. However, imperatorin has limited water solubility and has better lipid solubility; thus, we decided to design and synthesize imperatorin lipid microspheres to optimize the preparation conditions. The aim was to develop and formulate imperatorin lipid microspheres through nanoemulsion technology and apply the response surface–central composite design to optimize the imperatorin lipid microsphere formulation. The influence of the amounts of egg lecithin, poloxamer 188, and soybean oil for injection on the total percentage of the oil phase was investigated. The integrated effect of dependent variables, including particle size, polydispersity index, zeta potentials, drug loading, and encapsulation efficiency, was investigated. Data of overall desirabilities were fitted to a second-order polynomial equation, through which three-dimensional response surface graphs were described. Optimum experimental conditions were calculated by Design-Expert 8.06. Results indicated that the optimum preparation conditions were as follows: 1.39 g of egg lecithin, 0.21 g of poloxamer 188, and 10.57% soybean oil for injection. Preparation of imperatorin lipid microspheres according to the optimum experimental conditions resulted in an overall desirability of 0.7286, with the particle size of 168 ± 0.54 nm, polydispersity index (PDI) of 0.138 ± 0.02, zeta potentials of −43.5 ± 0.5 mV, drug loading of 0.833 ± 0.27 mg·mL−1, and encapsulation efficiency of 90 ± 1.27%. The difference between the observed and predicted values of the overall desirability of the optimum formulation was in the range from 2.4% to 4.3%. Subsequently, scanning electron microscopy was used to observe the micromorphology of the imperatorin lipid microspheres, showing round globules of relatively uniform shape and sizes within 200 nm. The effect of imperatorin lipid microspheres on MDA-MB-231 proliferation was investigated by the MTT method. Furthermore, pharmacokinetics in Sprague-Dawley rats was evaluated using orbital bleeding. A sensitive and reliable liquid chromatography with the high-performance liquid chromatography (HPLC) method was established and validated for the quantification of imperatorin in rat plasma samples. The data were calculated by DAS (drug and statistics) Pharmacokinetic Software version 3.3.0 (Version 3.3.0, Shanghai, China). Results demonstrated that imperatorin lipid microspheres can significantly enhance the bioavailability of imperatorin and can significantly inhibit MDA-MB-231 cell proliferation. In conclusion, our results suggested that the response surface–central composite design is suitable for achieving an optimized lipid microsphere formulation. Imperatorin lipid microspheres can improve the bioavailability of imperatorin and better inhibit the proliferation of MDA-MB-231 cells as compared to imperatorin alone.



Author(s):  
Xinli Liang ◽  
Xulong Chen ◽  
Guowei Zhen ◽  
Tao Tang ◽  
Chunyan Wang ◽  
...  

Imperatorin is a chemical compound belong to Linear furan coumarins. Imperatorin is attracting considerable attention because of its anti-tumor, antibacterial, anti-inflammatory, anticoagulant and inhibition of myocardial hypetrophy and other pharmacological efficacy. However, imperatorin has limited water solubility and preferable lipid solubility, we decided to design and synthesize imperatorin lipid microsphere, to optimize preparation conditions. The aim was to develop and formulate imperatorin lipid microsphere through nano emulsion technology and apply the response surface-central composite design to optimize the imperatorin lipid microsphere formulation. Influence of content of amount of egg lecithin(A), amount of poloxamer188(B), soybean oil for injection accounted for the total percentage of oil phase(C) were investigated. Integrated effect of dependent variables including particle size(Y1), polydispersity index(Y2), Zeta potentials(Y3), drug loading(Y4), encapsulation efficiency(Y5). Data of overall desirabiities were fitted to a second-order polynomial equation, through which three dimensional response surface graphs were described. Optimum experimental conditions were calculated by Design-Expert 8.06. Results indicated that the optimum preparation conditions were as follows: egg lecithin amount 1.39 g, poloxamer188 amount 0.21 g, soybean oil for injection amount 10.57%. Preparation of imperatorin lipid microsphere according to the optimum experimental conditions resulted in an overall desirability of 0.7286, while the particele size (168±0.54) nm, polydispersity index (PDI) (0.138±0.02), Zeta potentials (−43.5±0.5) mV, drug loading (0.833±0.27) mg·mL−1, encapsulation efficiency (90±1.27)%. The difference between observed and predicted values of the overall desirability of the optimum formulation was in range from 2.4% to 4.3%. Subsequently, using the Scanning electron microscopy to observe the micromorphology of imperatorin lipid microsphere, the result shows that round globular of relatively uniform and sizes within 200nm.The proliferation study of imperatorin lipid microsphere on MDA-MB-231 was investigated by MTT method. Furthermore, pharmacokinetics in Sprague Dawley rats were evaluated using orbital bleeding. A sensitive and reliable liquid chromatography with High Performance Liquid Chromatography (HPLC) method was established and validated for the quantification of imperatorin in rat plasma samples. The data were calculated by DAS (Drug and statistics) pharmacokinetic software version3.2.6 (China). Results demonstrated that imperatorin lipid microsphere can significantly enhance the bioavailability of imperatorin and can significantly inhibit MDA-MB-231 cell proliferating. In conclusion, our results suggersted that the response surface-central composite design is suitable for the optimized lipid microspere formulation. Imperatorin Lipid microsphere can improve the bioavailability of imperatorin and inhibit the proliferation of MDA-MB-231 than that of imperatorin.



2018 ◽  
Vol 745 ◽  
pp. 164-171 ◽  
Author(s):  
Peipei Zhu ◽  
Zhenyu Yang ◽  
Hai Zhang ◽  
Ji Yu ◽  
Ze Zhang ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document