scholarly journals Reaction mechanism of the magnesium ion-dependent adenosine triphosphatase of frog muscle myosin and subfragment 1

1978 ◽  
Vol 171 (1) ◽  
pp. 165-175 ◽  
Author(s):  
M A Ferenczi ◽  
E Homsher ◽  
R M Simmons ◽  
D R Trentham

The Mg2+-dependent ATPase (adenosine 5′-triphosphatase) mechanism of myosin and subfragment 1 prepared from frog leg muscle was investigated by transient kinetic technique. The results show that in general terms the mechanism is similar to that of the rabbit skeletal-muscle myosin ATPase. During subfragment-1 ATPase activity at 0-5 degrees C pH 7.0 and I0.15, the predominant component of the steady-state intermediate is a subfragment-1-products complex (E.ADP.Pi). Binary subfragment-1-ATP (E.ATP) and subfragment-1-ADP (E.ADP) complexes are the other main components of the steady-state intermediate, the relative concentrations of the three components E.ATP, E.ADP.Pi and E.ADP being 5.5:92.5:2.0 respectively. The frog myosin ATPase mechanism is distinguished from that of the rabbit at 0-5 degrees C by the low steady-state concentrations of E.ATP and E.ADP relative to that of E.ADP.Pi and can be described by: E + ATP k' + 1 in equilibrium k' − 1 E.ATP k' + 2 in equilibrium k' − 2 E.ADP.Pi k' + 3 in equilibrium k' − 3 E.ADP + Pi k' + 4 in equilibrium k' − 4 E + ADP. In the above conditions successive forward rate constants have values: k' + 1, 1.1 × 10(5)M-1.S-1; k' + 2 greater than 5s-1; k' + 3, 0.011 s-1; k' + 4, 0.5 s-1; k'-1 is probably less than 0.006s-1. The observed second-order rate constants of the association of actin to subfragment 1 and of ATP-induced dissociation of the actin-subfragment-1 complex are 5.5 × 10(4) M-1.S-1 and 7.4 × 10(5) M-1.S-1 respectively at 2-5 degrees C and pH 7.0. The physiological implications of these results are discussed.

Sign in / Sign up

Export Citation Format

Share Document