fluorescence enhancement
Recently Published Documents


TOTAL DOCUMENTS

1361
(FIVE YEARS 278)

H-INDEX

67
(FIVE YEARS 10)

2022 ◽  
Author(s):  
hui zhang ◽  
huan chen ◽  
TingTing Zhang ◽  
Xiaohu Mi ◽  
Zihe Jiang ◽  
...  

Plasmonic nanocavity is widely used for enhancing light-matter interaction. Here, an efficient plasmonic nanocavity of the cube-plate system is constructed for the fluorescence enhancement of rice-like CdSe/CdS Nanorods (NRs) with...


2021 ◽  
Vol 24 (02) ◽  
Author(s):  
Rizana Azees ◽  
Asitha T. Cooray ◽  
K.G.U.R. Kumarasinghe

Cobalt (Co2+) is an essential constituent in the human body while excessive exposure leads to severe systemic toxic reactions which highlight the importance of developing effective methods to detect Co2+ ions. A simple and highly efficient fluorescence enhanced turn OFF-ON chemosensor was synthesized to detect the paramagnetic Co2+. The ligand, N-((1H-indol-3-yl)(phenyl)methyl)aniline (L), was synthesized in 92% yield by means of hydrated ferric chloride catalyzed one -pot multicomponent microwave irradiation in the presence of Indole, benzaldehyde, and aniline as reactants. The major green principles of waste prevention, high atom economy (94.3%), green solvent, higher energy efficiency, and catalysis were the highlights of the ligand synthesis. The ligand exhibited remarkable fluorescence enhancement with Co2+ and a turn ON ratio of over 160-fold in MeOH/H2O (at pH 3.5) solution at an excitation wavelength of 369 nm in the Ultra-Violet range. The detection limit of L- Co2+ was 2.2 μM. The excitation and the emission spectra indicated stoke’s shift of 93 nm which supports the fluorescence enhancement observed in L- Co2+ with respect to the free ligand. The Job’s plot indicated fluorometric sensing of Co2+ ascribed to the complex formation with a stoichiometric ratio of 2:1 (L- Co2+). Furthermore, the high linearity (r2 =0.992) observed in the Benesi Hildebrand plot in a wide concentration range of 0.5−80 μM confirmed the above stoichiometric ratio. The association constant (Ka) for the L-Co2+ was determined to be 8.382 ×1 04 M−1 ± 5.8 ×103M−1.The prepared Co2+ fluorometric probe indicated long-term stability in −18 ℃ up to 45 days. Furthermore, the presence of Fe2+ and Fe3+ in the medium with Co2+ exhibited an interference effect in the fluorescence intensities. Upon further concentration studies, it was evident that the interference of Fe2+ and Fe3+ starts around 10.00 μM and rises exponentially. Keywords: MCR, Green synthesis, Fluorescent Chemo-sensor, Turn OFF-ON, Cobalt (II), indole derivatives


Author(s):  
Ritesh Singh Maurya ◽  
Swetha Jayanthi ◽  
Ch. Gupta Chandaluri ◽  
T. P. Radhakrishnan

2021 ◽  
Author(s):  
Mengyao Liu ◽  
Yonghong Li ◽  
Wei Xing ◽  
Yuqin Zhang ◽  
Xi Xie ◽  
...  

Abstract BackgroundEffective and accurate screening of oncological biomarkers in peripheral blood circulation plays an increasingly vital role in diagnosis and prognosis. High-sensitivity assays can effectively aid clinical decision-making and intervene in cancer in a localized status before they metastasize and become unmanageable. Meanwhile, it is equally pivotal to prevent overdiagnosis of non-life-threatening cancer by eliminating unnecessary treatment and repeated blood draws. Unfortunately, current clinical screening methodologies can hardly simultaneously attain sufficient sensitivity and specificity, especially under resource-restrained circumstances. To circumvent such limitations, particularly for cancer biomarkers from early-onset and recurrence, we aim to develop a universal plasmonic platform for clinical applications, which macroscopically amplifies multiplexed fluorescence signals in a broad spectral window readily adapts to current assay setups without sophisticated accessories or expertise at low cost. MethodsThe plasmonic substrate was chemically synthesized in situ at the solid-liquid interface by rationally screening a panel of reducing monosaccharides and tuning the redox reactions at various catalyst densities and precursor concentrations. The redox properties were studied by Benedict’s assay and electrochemistry. We systemically characterized the morphologies and optical properties of the engineered plasmonic Ag structures by scanning electron microscopy (SEM) and spectroscopy. The structure-fluorescence enhancement correlation was explicitly explained by the finite-difference time-domain (FDTD) simulation and a computational model for gap distribution. Next, we established an enhanced fluoroimmunoassay (eFIA) using a model biomarker for prostate cancer (PCa) and validated it in healthy and PCa cohorts. Prognosis was explored in patients subject to surgical and hormonal interventions following recommended PCa guidelines. ResultsThe monosaccharide-mediated redox reaction yielded a broad category of Ag structures, including sparsely dispersed nanoparticles of various sizes, semi-continuous nanoislands, and crackless continuous films. Optimal broad-spectral fluorescence enhancement from green to far-red was observed for the inhomogeneous, irregularly-shaped semi-continuous Ag nanoisland substrate (AgNIS), synthesized from a well-balanced redox reaction at a stable rate mediated by mannose. In addition, different local electric field intensity distributions in response to various incident excitations were observed at the nanoscale, elucidating the need for irregular and inhomogeneous structures. AgNIS enabled a maximized 54.7-fold macroscopically amplified fluorescence and long-lasting photostability. Point-of-care availability was fulfilled using a customized smartphone prototype with well-paired optics. The eFIA effectively detected the PCa marker in cell lines, xenograft tumors, and patient sera. The plasmonic platform rendered a diagnostic sensitivity of 86.0% and a specificity of 94.7% and capably staged high-grade PCa that the clinical gold standard test failed to stratify. Patient prognosis of surgical and hormonal interventions was non-invasively monitored following efficient medical interventions. The assay time was significantly curtailed on the plasmonic platform upon microwave irradiation. ConclusionsBy investigating the effects of monosaccharides on the seed-mediated chemical synthesis of plasmonic Ag structures, we deduced that potent multiplexed fluorescence enhancement originated from both an adequate reducing power and a steady reduction rate. Furthermore, the inhomogeneous structure with adequate medium gap distances afforded optimal multiwavelength fluorescence enhancement, thus empowering an effective eFIA for PCa. The clinically validated diagnostic and prognostic features, along with the low sample volume, point-of-care feasibility with a smartphone, and microwave-shortened assay time, warrant its potential clinical translation for widespread cancer biomarker analysis.


Chemosensors ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Mariana Barros ◽  
Samuel Ceballos ◽  
Pau Arroyo ◽  
José Antonio Sáez ◽  
Margarita Parra ◽  
...  

Biogenic polyamines, especially spermine and spermidine, are associated with cell growth and development. These amines can be found at high concentrations in the tumor cells, tissues, and urine of cancer patients. In contrast, spermidine levels drop with age, and a possible connection between low endogenous spermidine concentrations and age-related deterioration has been suggested. Thus, the quantification of these amines in body fluids like urine could be used in the diagnosis of different pathological situations. Here a new fluorescent molecular probe based on a tetraphenylethylene derivative is reported. This probe is able to selectively detect these amines through the enhancement of the fluorescence emission of the resulting complex. This fluorescence enhancement may be related to restricted intramolecular rotations of TPE phenyl rings induced by the analyte. Theoretical studies were carried out to shed light on the observed selectivity. Finally, the detection of these amines in urine was performed with limits of detection of 0.70 µM and 1.17 µM for spermine and spermidine, respectively.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qunpeng Duan ◽  
Yibo Xing ◽  
Kainan Guo

In the present work, we have developed a new indicator displacement system based on pillararene for anionic water-soluble carboxylato pillar [6] arene (WP6) and aromatic fluorescent dye safranine T (ST). A large fluorescence enhancement and colour change of ST were observed after complexation with electron-rich cavity in WP6 because of host-guest twisted intramolecular charge-transfer interactions. The constructed pillararene-indicator displacement system can be applied for caffeine selective detection in water.


Sign in / Sign up

Export Citation Format

Share Document