scholarly journals Receptor-mediated gonadotropin action in the ovary. Regulatory role of cyclic nucleotide phosphodiesterase(s) in intracellular adenosine 3′:5′-cyclic monophosphate turnover and gonadotropin-stimulated progesterone production by rat ovarian cells

1979 ◽  
Vol 180 (1) ◽  
pp. 201-211 ◽  
Author(s):  
Salman Azhar ◽  
K. M. Jairam Menon

The regulatory role of cyclic nucleotide phosphodiesterase(s) and cyclic AMP metabolism in relation to progesterone production by gonadotropins has been studied in isolated rat ovarian cells. Low concentrations of choriogonadotropin (0.4–5ng/ml) increased steroid production without any detectable increase in cyclic AMP, when experiments were carried out in the absence of phosphodiesterase inhibitors. The concentration of choriogonadotropin (10ng/ml) that stimulated progesterone synthesis maximally resulted in a minimal increase in cyclic AMP accumulation and choriogonadotropin binding. Choriogonadotropin at a concentration of 10ng/ml and higher, however, significantly stimulated protein kinase activity and reached a maximum between 250 and 1000ng of hormone/ml. Higher concentrations (50–2500ng/ml) of choriogonadotropin caused an increase in endogenous cyclic AMP, and this increase preceded the increase in steroid synthesis. Analysis of dose–response relationships of gonadotropin-stimulated cyclic AMP accumulation, progesterone production and protein kinase activity revealed a correlation between these responses over a wide concentration range when experiments were performed in the presence of 3-isobutyl-1-methylxanthine. The phosphodiesterase inhibitors papaverine, theophylline and 3-isobutyl-1-methylxanthine each stimulated steroid production in a dose-dependent manner. Incubation of ovarian cells with dibutyryl cyclic AMP or 8-bromo cyclic AMP mimicked the steroidogenic action of gonadotropins and this effect was dependent on both incubation time and nucleotide concentration. Maximum stimulation was obtained with 2mm-dibutyryl cyclic AMP and 8-bromo cyclic AMP, and this increase was close to that produced by a maximally stimulating dose of choriogonadotropin. Other 8-substituted derivatives such as 8-hydroxy cyclic AMP and 8-isopropylthio cyclic AMP, which were less susceptible to phosphodiesterase action, also effectively stimulated steroidogenesis. The uptake and metabolism of cyclic [3H]AMP in ovarian cells was also studied in relation to steroidogenesis. When ovarian cells were incubated for 2h in the presence of increasing concentrations of cyclic [3H]AMP, the radioactivity associated with the cells increased almost linearly up to 250μm-cyclic [3H]AMP concentration in the incubation medium. The 3H label in the cellular extract was recovered mainly in the forms ATP, ADP, AMP, adenosine and inosine, with cyclic AMP accounting for less than 1% of the total tissue radioactivity. Incubation of cyclic AMP in vitro with ovarian cells resulted in a rapid breakdown of the nucleotide in the medium. The degradation products in the medium have been identified as AMP, adenosine and inosine. The rapid degradation of cyclic AMP by phosphodiesterase(s) makes it difficult to correlate changes in cyclic AMP concentrations with steroidogenesis. These observations thus provide an explanation for the previously observed lack of cyclic AMP accumulation under conditions in which low doses of choriogonadotropin stimulated steroidogenesis without any detectable changes in cyclic AMP accumulation.

1976 ◽  
Vol 160 (1) ◽  
pp. 1-9 ◽  
Author(s):  
W R Moyle ◽  
G J MacDonald ◽  
J E Garfink

In an attempt to determine the role of protein (histone) kinases as mediators of corticotropin-induced corticosterone formation, the ability of homogenates, prepared from adrenals treated with various doses of corticotropin to catalyse the phosphorylation of calf thymus histones was measured. Although corticotropin promoted an increase in histone kinase activity, much more of the hormone was required to induce this response than to stimulate steroidogenesis maximally. In addition, a derivative, nitrophenylsulphenyl-corticotropin, which inhibits the stimulatory effect of corticotropin on cyclic AMP accumulation, stimulated corticosterone synthesis without altering histone kinase activity. Very high doses of nitrophenylsulphenyl-corticotropin were capable of stimulating histone kinase activity. In contrast, when dibutyryl cyclic AMP was used to stimulate steroidogenesis under the same conditions, any dose of the nucleotide which increased adrenal corticosteroid content also increased histone kinase activity. Assuming that histones serve as useful substrates for measurement of total adrenal protein kinase activity, the role of protein kinases as mediators of steroidogenesis is not supported by these studies.


1976 ◽  
Vol 158 (2) ◽  
pp. 175-182 ◽  
Author(s):  
M R Clark ◽  
S Azhar ◽  
K M J Menon

Choriogonadotropin and lutropin have been found to activate cyclic AMP-dependent protein kinase in ovarian cells isolated by collagenase dispersion from immature rats. The stimulatory effect of gonadotropins was dependent on both hormone concentration and incubation time. Choriogonadotropin at 1 mug/ml fully stimulated the protein kinase activity within 5 min of incubation, and this effect was specific for choriogonadotropin and lutropin-like activity. In addition, protein kinase activity has been characterized with respect to salt sensitivity, cyclic AMP binding, and its responsiveness to gonadotropins and other peptide hormones. Ovarian protein kinase was susceptible to high salt concentrations. The addition of 0.3-1.0 M-NaCl in incubation medium increased the activity ratio with a concomitant decrease in cycle AMP-dependence. The salt effect on protein kinase was observed both from hormone-treated and untreated cells. The hormone-stimulated and unstimulated protein kinase activity was completely stable in the absence of NaCl. No change in the activity ratio was observed when cellular extracts were assayed for protein kinase activity either immediately or after 2 h in the absence of added salt. Gel filtration in the absence of NaCl of cellular extracts prepared from choriogonadotropin-treated and untreated cells showned only a single peak of protein kinase activity that was sensitive to exogenously added cyclic AMP. By contrast, when 0.5 M-NaCl was included in the column buffer, the chromatography of untreated extract showed two peaks of protein kinase activity. The first peak was sensitive to added cyclic AMP, whereas the second peak was insensitive to it. Under identical experimental conditions, protein kinase from gonadotropin-treated cells showed, on gel filtration, only one peak of activity that was totally insensitive to added cyclic AMP. DEAE-cellulose column chromatography of a 20000 g supernatant fraction resulted in a peak of kinase activity that eluted in approx. 0.15 M-NaCl, similar to the similar to the elution of type II protein kinases as described by Corbin et al. (1975) (J. Biol. Chem. 250, 218-225). Choriogonadotropin stimulation produced a decrease in the capacity of protein kinase to bind exogenous cyclic [3H]AMP, with a concomitant increase in the kinase activity ratio. These results are consistent with the notion that cyclic AMP, GENERATED IN SITU Under hormonal stimulation, binds tot he regulatory subunit of protein kinase with subsequent dissociation of the active catalytic subunit from the holoenzyme.


1981 ◽  
Vol 90 (2) ◽  
pp. 402-407 ◽  
Author(s):  
PF Hall ◽  
S Osawa ◽  
CL Thomasson

Two approaches were used to study the possible role of calmodulin in the regulation of steroid synthesis by mouse adrenal tumor cells: trifluoperazine was used as an inhibitor of calmodulin and liposomes were used to deliver calmodulin into the cells. Trifluoperazine inhibits three steroidogenic responses to both ACTH and dibutyryl cyclic AMP: (a) increase in steroid production, (b) increased transport of cholesterol to mitochondria, and (c) increased side-chain cleavage by mitochondria isolated from cells incubated with ACTH or dibutyryl cyclic AMP. When calmodulin is introduced into the cells via liposomes, steroid synthesis is slightly stimulated. When calmodulin extensively dialyzed against EGTA, this stimulation is abolished. Ca(2+) introduced via liposomes was also without effect. However, when both calmodulin and Ca(2+) are introduced via liposomes (either in separate liposomes or in the same liposomes), steroid synthesis is stimulated. This stimulation does not occur when either anticalmodulin antibodies or EGTA is also present in the liposomes or when trifluoperazine is present in the incubation medium. Calmodulin and Ca(2+) presented together in liposomes to the cells stimulate transport of cholesterol to mitochondria, and side-chain cleavage activity is greater in mitochondria isolated from cells previously fused with liposomes containing calmodulin and Ca(2+) than in mitochondria from cells fused with liposomes containing buffer only. These observations suggest that calmodulin may be involved in regulating the transport of cholesterol to mitochondria, a process which is stimulated by ACTH and dibutyryl cyclic AMP and which may account, at least in part, for the increase in steroid synthesis produced by these agents.


1989 ◽  
Vol 264 (24) ◽  
pp. 14549-14555 ◽  
Author(s):  
D Kübler ◽  
W Pyerin ◽  
O Bill ◽  
A Hotz ◽  
J Sonka ◽  
...  

1977 ◽  
Vol 232 (1) ◽  
pp. F50-F57
Author(s):  
T. P. Dousa ◽  
L. D. Barnes

Results of this study demonstrate that vasopressin activates protein kinase in intact renal medullary cells as detected by measurement of the (-cyclic AMP/+cyclic AMP) protein kinase activity ratios in freshly prepared tissue extracts (40,000 X g supernates) from bovine renal medullary slices. The activation of protein kinase was specific for vasopressin since parathyroid hormone, histamine, angiotensin II, or the inactive analog of vasopressin did not activate protein kinase. There was a direct correlation between the extent of protein kinase activation and the elevation in tissue levels of cyclic AMP elicited by increasing doses of vasopressin or with an increase in incubation time. The elevation of tissue cyclic AMP level and maximum activation of protein kinase reached maximum level at a vasopressin concentration of about 2 X 10(-9) M. Incubation of slices with vasopressin caused a dose-dependent decrease in the cyclic AMP-dependent protein kinase activity in the 40,000 X g supernate of homogenate from the renal medullary slices. This effect of vasopressin was specific for protein kinase since activity of lactate dehydrogenase or a specific [3H]colchicine-binding activity was not affected, and the decrease in the protein kinase was not due to the accumulation of a heat-stable protein kinase inhibitor. There was an increase in protein kinase was not due to the accumulation of a heat-stable protein kinase inhibitor. There was an increase in protein kinase activity extracted from 40,000 X g pellets of homogenate prepared from slices exposed to vasopressin. Results thus provide evidence that cyclic AMP-mediated protein kinase activation in the intact cells is an integral part of cellular response of the mammalian renal medulla to vasopressin.


Sign in / Sign up

Export Citation Format

Share Document