scholarly journals Purification and properties of lung lectin. Rat lung and human lung β-galactoside-binding proteins

1980 ◽  
Vol 187 (1) ◽  
pp. 123-129 ◽  
Author(s):  
J T Powell

Lung is one of the organs of the rat with a particular abundance of haemagglutinating activity that is inhibited by beta-galactosides. This lectin activity can be attributed to a single protein that has been purified from rat lung; a similar protein has been purified from human lung. The molecular weights and subunit structures were estimated from gel filtration and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis; the human lung lectin appeared to be composed to two identical subunits, mol.wt. 14500, whereas rat lung lectin was observed as both a dimer and a tetramer of one subunit type, mol.wt. 13500. Both lectins bind to disaccharides or oligosaccharides with terminal beta-linked galactose residues. The carbohydrate moiety may be free [lactose or D-galactopyranosyl-beta-(1 leads to 4)-thiogalactopyranoside], protein-bound (asialofetuin) or lipid-bound (cerebrosides). The molecular properties of the beta-galactoside-binding proteins of rat lung and human lung are closely similar to those of embryonic chick muscle lectin [Nowak, Kobiler, Roel & Barondes (1977) Proc. Natl. Acad. Sci. U.S.A. 73, 1383–1387] and calf heart lectin [De Waard, Hickman & Kornfeld (1976) J. Biol. Chem. 251, 7581–7587].

1981 ◽  
Vol 59 (11-12) ◽  
pp. 916-920 ◽  
Author(s):  
Hugh S. Keeping ◽  
Shioko Kimura ◽  
Jane Lovsted ◽  
Peter H. Jellinck

Peroxidase was purified 3700-fold from homogenates of estradiol-treated rat uteri by affinity chromatography on concanavalin A (ConA) – Sepharose followed by gel filtration on Bio-Gel P-150 with high recovery of enzyme. A single protein (molecular weight (MW) 45 000) staining for heme was shown by sodium dodecyl sulfate – polyacrylamide gel electrophoresis to be present in the peak fractions of enzymic activity eluted from the ConA–Sepharose column. This protein had the same mobility as bovine lactoperoxidase (MW 78 000) in a cationic gel electrophoretic system under nondenaturing conditions. Peroxidase activity in a NaCl extract of the uterus was lower than that in a CaCl2 extract but was unaffected by prolonged storage at −20 °C. In contrast, the CaCl2-extracted enzyme lost much, of its activity under these conditions by a process which could be prevented by the addition of glycerol. The sulfhydryl reagent, N-ethylmaleimide, which caused a marked increase in the activity of uterine peroxidase, provided only partial protection against inactivation during storage of CaCl2 extracts of this enzyme at low temperature.


1992 ◽  
Vol 38 (5) ◽  
pp. 436-442 ◽  
Author(s):  
Devyani Dey ◽  
Jyoti Hinge ◽  
Abhay Shendye ◽  
Mala Rao

An alkalophilic thermophilic Bacillus sp. (NCIM 59) isolated from soil produced two types of cellulase-free xylanase at pH 10 and 50 °C. The two enzymes (xylanase I and II) were purified to homogeneity by ethanol precipitation followed by Bio-Gel P-10 gel filtration and preparative polyacrylamide gel electrophoresis. The molecular weights of xylanase I and II were estimated to be 35 000 and 15 800, respectively, by sodium dodecyl sulfate gel electrophoresis. The enzymes exhibited immunological cross-reactivity and were glycoproteins. They had similar temperature (50–60 °C) and pH (6) optima. Both xylanases were stable at 50 °C at pH 7 for 4 days. However, xylanase I was comparatively more stable than xylanase II at 60 °C. The isoelectric points of xylanase I and II were 4 and 8, respectively. The apparent Km values, using xylan as substrate, were 1.58 and 3.5 mg/mL, and Vmax values were 0.0172 and 0.742 μmol∙min−1∙mg−1, respectively. Both xylanases were inhibited by N-bromosuccinimide, suggesting the involvement of tryptophan in the active site. The hydrolysis patterns demonstrated that the xylanases were endoenzymes. Xylanase I and II yielded mainly xylobiose, xylotriose, and higher xylooligosaccharides, with traces of xylose from xylan. Key words: cellulase-free xylanase, alkalophilic thermophilic Bacillus sp., enzyme purification, characterization.


2000 ◽  
Vol 66 (1) ◽  
pp. 252-256 ◽  
Author(s):  
Katsuichi Saito ◽  
Kazuya Kondo ◽  
Ichiro Kojima ◽  
Atsushi Yokota ◽  
Fusao Tomita

ABSTRACT Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a β-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH and temperature of the enzyme for levan degradation were pH 5.5 and 60°C, respectively. The enzyme was stable in the pH range 3.5 to 8.0 and also up to 50°C. The enzyme gave levanbiose as a major degradation product from levan in an exo-acting manner. It was also found that this enzyme catalyzed hydrolysis of such fructooligosaccharides as 1-kestose, nystose, and 1-fructosylnystose by liberating fructose. Thus, this enzyme appeared to hydrolyze not only β-2,6-linkage of levan, but also β-2,1-linkage of fructooligosaccharides. From these data, the enzyme from S. exfoliatus F3-2 was identified as a novel 2,6-β-d-fructan 6-levanbiohydrolase (EC 3.2.1.64 ).


1983 ◽  
Vol 59 (1) ◽  
pp. 81-103 ◽  
Author(s):  
R. Crossley ◽  
D.V. Holberton

Proteins from the axonemes and disc cytoskeleton of Giardia lamblia have been examined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. In addition to tubulin and the 30 X 10(3) molecular weight disc protein, at least 18 minor components copurify with the two major proteins in Triton-insoluble structures. The most prominent minor bands have the apparent molecular weights of 110 X 10(3), 95 X 10(3) and 81 X 10(3). Protein of 30 X 10(3) molecular weight accounts for about 20% of organelle protein on gels. In continuous 25 mM-Tris-glycine buffer it migrates mostly as a close-spaced doublet of polypeptides, which are here given the name giardins. Giardia tubulin and giardin have been purified by gel filtration chromatography in the presence of sodium dodecyl sulphate. Well-separated fractions were obtained that could be further characterized. Both proteins are heterogeneous when examined by isoelectric focusing. Five tubulin chains were detected by PAGE Blue 83 dye-binding after focusing in a broad-range ampholyte gel. Giardin is slightly less acidic than tubulin. On gels it splits into four major and four minor chains with isoelectric points in the pI range from 5.8 to 6.2. The amino acid composition of the giardin fraction has been determined, and compared to Giardia tubulin and a rat brain tubulin standard. Giardins are rich in helix-forming residues, particularly leucine. They have a low content of proline and glycine; therefore they may have extensive alpha-helical regions and be rod-shaped. As integral proteins of disc microribbons, giardins in vivo associate closely with tubulin. The properties of giardins indicate that in a number of respects - molecular size, charge, stoichiometry - their structural interaction with tubulin assemblies will be different from other tubulin-accessory protein copolymers studied in vitro.


1996 ◽  
Vol 51 (5-6) ◽  
pp. 342-354 ◽  
Author(s):  
Beate Nicolaus ◽  
Yukiharu Sato ◽  
Ko Wakabayashi ◽  
Peter Böger

Abstract Thiadiazolidine-converting activity (isomerase), detected in a 45-75% ammonium sulfate precipitate from corn seedlings extracts, was purified by chromatography on hydroxyapatite and by anion exchange on Mono Q Sepharose. Two fractions 1 and 2 with isomerase activity were separated on Mono Q by combination of a stepwise elution and continuous salt gradient; fraction 2 eluting at higher salt concentrations was found the most active. Total activity could be enhanced by treatment of seedlings with naphthalic anhydride. Both fractions containing isomerase activity were further purified by glutathione-(GSH) agarose affinity chromatography and characterized by their specificity for different thiadiazolidines. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel filtration revealed that the isomerase of fraction 2 consists either of a homodimer or a heterodimer of two proteins with apparent molecular weights of 28 and 31 kDa, respectively. The protein pattern as well as the strict dependence of activity on thiol groups (GSH or dithiothreitol) suggested a glutathione Stransferase (GST) catalyzing the thiadiazolidine conversion. Further evidence was obtained by measuring reactions specific for GSTs in both purified fractions, namely the conjugating activity for l-chloro-2,4-dinitrobenzene (CDNB ). atrazine and metazachlor. While no atrazine turnover was found, metazachlor and CDNB conjugation occurred rapidly. Both fractions differed in their activities to several GST substrates with fraction 2 being more effective in metazachlor but less active in C DN B conjugation. Inhibitors specific for GST-catalyzed reactions also inhibited thiadiazolidine conversion confirming that isomerizing activity is attributed to a GST form. We conclude that GST isoforms with different affinities towards thiadiazolidines have been isolated. CDNB activity, molecular weight, the protein pattern on SDS-PAGE as well as the amino acid sequence of one of its polypeptides suggest that fraction 1, less active in thiadiazolidine isomerization, is identical to GST I. The second peptide of this fraction was resistant to Edman degradation probably due to N-terminal blockage. The properties of the high isomerase activity found in fraction 2 are in agreement with characteristics of a GST previously termed as isoform II.


1984 ◽  
Vol 220 (3) ◽  
pp. 811-818 ◽  
Author(s):  
M P Waalkes ◽  
S B Chernoff ◽  
C D Klaassen

Cadmium-binding proteins in the cytosol of testes from untreated rats were separated by Sephadex G-75 gel filtration. Three major testicular metal-binding proteins (TMBP), or groups of proteins, with relative elution volumes of approx. 1.0 (TMBP-1), 1.7 (TMBP-2) and 2.4 (TMBP-3) were separated. Elution of Zn-binding proteins exhibited a similar pattern. TMBP-3 has previously been thought to be metallothionein (MT), and hence this protein was further characterized and compared with hepatic MT isolated from Cd-treated rats. Estimation of Mr by gel filtration indicated a slight difference between MT (Mr 10000) and TMBP-3 (Mr 8000). Two major forms of MT (MT-I and MT-II) and TMBP-3 (TMBP-3 form I and TMBP-3 form II) were obtained after DEAE-Sephadex A-25 anion-exchange chromatography, with the corresponding subfractions being eluted at similar conductances. Non-denaturing polyacrylamide-gel electrophoresis on 7% acrylamide gels indicated that the subfractions of TMBP-3 had similar mobilities to those of the corresponding subfractions of MT. However, SDS (sodium dodecyl sulphate)/12% (w/v)-polyacrylamide-gel electrophoresis resulted in marked differences in migration of the two corresponding forms of MT and TMBP-3. Co-electrophoresis of MT-II and TMBP-3 form II by SDS/polyacrylamide-gel electrophoresis revealed two distinct proteins. Amino acid analysis indicated much lower content of cysteine in the testicular than in the hepatic proteins. TMBP-3 also contained significant amounts of tyrosine, phenylalanine and histidine, whereas MT did not. U.v.-spectral analysis of TMBP-3 showed a much lower A250/A280 ratio than for MT. Thus this major metal-binding protein in testes, which has been assumed to be MT is, in fact, a quite different protein.


1984 ◽  
Vol 224 (1) ◽  
pp. 171-179 ◽  
Author(s):  
I R Cottingham ◽  
A L Moore

The external NADH dehydrogenase has been purified from Arum maculatum (cuckoo-pint) mitochondria by phosphate washing, extraction with deoxycholate, ion-exchange and gel-filtration chromatography. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis shows, when the gel is silver-stained, that the purified enzyme contains two major bands of Mr 78 000 and 65 000 and a minor one of Mr about 76 000. It is not possible at present to determine which of these, or which combination, constitutes the dehydrogenase. The enzyme contains non-covalently bound FAD and a small amount of FMN. Since the conditions of purification lead to considerable loss of flavin and possibly iron-sulphur centres, it is not possible to decide with certainty whether the enzyme is a flavo- or ferroflavo-protein. The enzyme has been distinguished from the other NADH dehydrogenases on the basis of its substrate specificity, its capability of reducing electron acceptors such as ubiquinone-1 and 2,6-dichlorophenol-indophenol and its sensitivity towards Ca2+, EGTA and dicoumarol.


1982 ◽  
Vol 207 (1) ◽  
pp. 133-138 ◽  
Author(s):  
M G Battelli ◽  
E Lorenzoni

A new GSSG-dependent thiol:disulphide oxidoreductase was extensively purified from rat liver cytosol. The enzymic protein shows molecular weight 40 000 as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, and 43 000 as determined by thin-layer gel filtration on Bio-Gel P-100. The pI is 8.1. This enzyme converts rat liver xanthine dehydrogenase into an oxidase, in the presence of oxidized glutathione. Other disulphide compounds are either inactive or far less active than oxidized glutathione in the enzymic oxidation of rat liver xanthine dehydrogenase. The enzyme also catalyses the reduction of the disulphide bond of ricin and acts as a thioltransferase and as a GSH:insulin transhydrogenase. The enzymic activity was measured in various organs of newborn and adult rats.


1974 ◽  
Vol 77 (3) ◽  
pp. 485-497 ◽  
Author(s):  
P. A. Torjesen ◽  
T. Sand ◽  
N. Norman ◽  
O. Trygstad ◽  
I. Foss

ABSTRACT Highly purified human LH, FSH and TSH were isolated from batches of 300 frozen pituitary glands (200 g) by pH, acetone and ethanol fractionation, Sephadex gel filtration, ion-exchange chromatography on DEAE-cellulose and CM-Sephadex, and preparative polyacrylamide-gel electrophoresis. Sodium dodecyl-sulphate (SDS) polyacrylamide gel electrophoresis was used in order to check the purity, the identity and the molecular weight of the purified LH, FSH and TSH. This procedure showed that the hormone preparations consisted of two subunits with molecular weights of: LH: 21 300 and 17 900, FSH: 22 100 and 18 300 and TSH: 20 800 and 16 400. The purity of the hormone preparations was also evaluated by analytical disc electrophoresis at pH 8.9. The purified hormone preparations had radioimmunological activity as follows: LH: 20 000 IU/mg, FSH: 16 500 IU/mg and TSH: 5 IU/mg. All preparations had high biological potency.


2003 ◽  
Vol 69 (9) ◽  
pp. 5089-5095 ◽  
Author(s):  
Juan-José R. Coque ◽  
María Luisa Álvarez-Rodríguez ◽  
Germán Larriba

ABSTRACT A novel S-adenosyl-l-methionine (SAM)-dependent methyltransferase catalyzing the O methylation of several chlorophenols and other halogenated phenols was purified 220-fold to apparent homogeneity from mycelia of Trichoderma longibrachiatum CECT 20431. The enzyme could be identified in partially purified protein preparations by direct photolabeling with [methyl-3H]SAM, and this reaction was prevented by previous incubation with S-adenosylhomocysteine. Gel filtration indicated that the M r was 112,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the enzyme was composed of two subunits with molecular weights of approximately 52,500. The enzyme had a pH optimum between 8.2 and 8.5 and an optimum temperature of 28°C, with a pI of 4.9. The Km values for 2,4,6-trichlorophenol and SAM were 135.9 ± 12.8 and 284.1 ± 35.1 μM, respectively. S-Adenosylhomocysteine acted as a competitive inhibitor, with a Ki of 378.9 ± 45.4 μM. The methyltransferase was also strongly inhibited by low concentrations of several metal ions, such as Cu2+, Hg2+, Zn2+, and Ag+, and to a lesser extent by p-chloromercuribenzoic acid, but it was not significantly affected by several thiols or other thiol reagents. The methyltransferase was specifically induced by several chlorophenols, especially if they contained three or more chlorine atoms in their structures. Substrate specificity studies showed that the activity was also specific for halogenated phenols containing fluoro, chloro, or bromo substituents, whereas other hydroxylated compounds, such as hydroxylated benzoic acids, hydroxybenzaldehydes, phenol, 2-metoxyphenol, and dihydroxybenzene, were not methylated.


Sign in / Sign up

Export Citation Format

Share Document