scholarly journals Role of adrenaline and cyclic AMP in appearance of tyrosine aminotransferase in perinatal rat liver

1980 ◽  
Vol 190 (3) ◽  
pp. 685-690 ◽  
Author(s):  
A V Ghisalberti ◽  
J G Steele ◽  
M H Cake ◽  
M C McGrath ◽  
I T Oliver

1. Adrenaline increased hepatic tyrosine aminotransferase activity when injected into foetal rats or 2-day-old rats. 2. The inhibition of the postnatal increase in tyrosine aminotransferase activity which occurred in adrenalectomized newborn rats rapidly overcome by injection of adrenaline or dibutyryl cyclic AMP. 3. The effects of adrenaline or dibutyryl cyclic AMP on the tyrosine aminotransferase activity in foetal, adrenalectomized newborn and 2-day-old rats could be partially or completely blocked by prior treatment with actinomycin D. 4. Dibutyryl cyclic AMP induced tyrosine aminotransferase activity in hepatocytes cultured from 15-day foetal rats in glucocorticoid-free medium. 5. Actinomycin D at 0.2 microgram/ml in the culture medium completely prevented the induction of tyrosine aminotransferase activity by dibutyryl cyclic AMP in cultured cells. 6. The results suggest that adrenaline and cyclic AMP stimulate a transcriptional event during induction of tyrosine aminotransferase in perinatal liver.

1973 ◽  
Vol 134 (4) ◽  
pp. 899-906 ◽  
Author(s):  
Keith Snell ◽  
Deryck G. Walker

1. The concentrations of liver glycogen and plasma d-glucose were measured in caesarian-delivered newborn rats at time-intervals up to 3h after delivery after treatment of the neonatal rats with glucagon, dibutyryl cyclic AMP, cortisol or cortisol+dibutyryl cyclic AMP. Glycogenolysis was promoted by glucagon or dibutyryl cyclic AMP in the third hour after birth but not at earlier times. Cortisol and dibutyryl cyclic AMP together (but neither agent alone) promoted glycogenolysis in the second hour after birth, but no hormone combination was effective in the first postnatal hour. 2. The specific radioactivity of plasma d-glucose was measured as a function of time for up to 75 min after the intraperitoneal injection of d-[6-14C]glucose and d-[6-3H]glucose into newborn rats at delivery and after treatment with glucagon or actinomycin D. Glucagon-mediated hyperglycaemia at this time was due to an increased rate of glucose formation and a decreased rate of glucose utilization. Actinomycin D prevented glucose formation and accelerated the rate of postnatal hypoglycaemia. 3. The specific radioactivity of plasma l-lactate and the incorporation of 14C into plasma d-glucose was measured as a function of time after the intraperitoneal injection of l-[U-14C]lactate into glucagon- or actinomycin D-treated rats immediately after delivery. The calculated rates of lactate formation were unchanged by either treatment, but lactate utilization was stimulated by glucagon administration. Glucagon stimulated and actinomycin D diminished 14C incorporation into plasma d-glucose. 4. The factors involved in the initiation of glycogenolysis and gluconeogenesis in the rat immediately after birth are discussed.


1979 ◽  
Vol 180 (3) ◽  
pp. 545-549 ◽  
Author(s):  
G C T Yeoh ◽  
T Arbuckle ◽  
I T Oliver

1. The administration of dexamethasone to foetal rats in utero does not result in the appearance of specific tyrosine aminotransferase activity even after 24 h. 2. When foetal hepatocytes are cultured in vitro from animals treated in utero with dexamethasone, significantly higher activities of specific tyrosine aminotransferase are found than in untreated controls. 3. Dexamethasone in vitro induces specific tyrosine aminotransferase in cells cultured from control animals and the effect is maximal at 10 nM in the culture medium. 4. Actinomycin D at 0.2 microgram/ml in the culture medium completely prevents the induction of activity in vitro. 5. In cultures established from animals treated with dexamethasone in utero, the increase in specific tyrosine aminotransferase activity over the control cultures is only marginally decreased in the presence of actinomycin D. 6. The results can be interpreted to mean that dexamethasone in utero stimulates the transcription of enzyme-specific mRNA, which is not rranslated until a translational block in the foetal liver is removed by the conditions of culture in vitro.


1981 ◽  
Vol 196 (2) ◽  
pp. 383-390 ◽  
Author(s):  
M J Wakelam ◽  
D G Walker

1. The specificity of the effect of glucose on the induction of glucokinase activity that occurs when hepatocytes freshly isolated from 13-day-old rats are incubated in Medium 199 together with insulin [Wakelam & Walker (1980) FEBS Lett. 111, 115-119] was examined. A pattern that is different from other known effects of glucose is found, and metabolism of this compound is not necessarily to account for this particular effect. 2. The effects of a raised glucose concentration and of insulin on the induction can be separated. The hexose initiates the process in the absence of insulin in a manner that is sensitive to actinomycin D but not to cycloheximide. The subsequent effect of insulin is dependent on the prior effect of glucose or other positive analogue, does not require the presence of glucose and is inhibited by cycloheximide but not by actinomycin D. 3. Induction of glucokinase in vitro in hepatocytes from neonatal animals is inhibited by adrenaline, glucagon and dibutyryl cyclic AMP, but not by vasopressin or angiotensin II. The inhibition by cyclic AMP is on the stage requiring insulin and is comparatively specific, because total protein synthesis is not apparently diminished. 4. The implications of these results are discussed with reference to possible mechanisms of induction and to the situation in vivo.


1968 ◽  
Vol 108 (2) ◽  
pp. 333-338 ◽  
Author(s):  
P. G. Holt ◽  
I. T. Oliver

1. Premature delivery of foetal rats by uterine section results in the rapid appearance of tyrosine aminotransferase activity in foetal liver, after an initial lag period of 3–6hr. 2. The premature induction of activity is completely repressible by actinomycin D given soon after delivery and partially repressible by puromycin and amino acid analogues. 3. Glucagon injections into foetal rats in utero lead to production of tyrosine aminotransferase in the foetal liver, but adrenalin and nor-adrenalin are without effect. 4. Injections of glucose, galactose, fructose and mannose into prematurely delivered rats repress the development of tyrosine aminotransferase activity about 50% when they are given 2hr. after delivery, but glucose has no significant effect when injected at delivery. 5. The results are discussed in relation to current hypotheses on the role of hormones in enzyme induction in foetal development.


1991 ◽  
Vol 125 (3) ◽  
pp. 280-285 ◽  
Author(s):  
J. Alan Talbot ◽  
Ann Lambert ◽  
Robert Mitchell ◽  
Marek Grabinski ◽  
David C. Anderson ◽  
...  

Abstract We have investigated the role of Ca2+ in the control of FSH-induced estradiol secretion by Sertoli cells isolated from 8-10 days old rats. Exogenous Ca2+ (4-8 mmol/1) inhibited FSH-stimulated E2 secretion such that, with 8 mmol/l Ca2+ and FSH (8 IU/l) E2 secretion decreased from 2091±322 to 1480±84 pmol/l (p<0.002), whilst chelation of Ca2+ in the culture medium with EGTA (3 mmol/l) increased E2 secretion from 360±45 to 1242±133 pmol/l) in the absence of FSH. Further, EGTA (3 mmol/l) markedly potentiated FSH (8 IU/l), forskolin (1 μmol/l) and dibutyryl cAMP (1 mmol/l)-stimulated E2 secretion. Addition of the Ca2+ ionophores, ionomycin (2-5 μmol/l) and A23187 (2 μmol/l), inhibited FSH (8 IU/l)-stimulated E2 secretion by >80%. The effect of ionomycin was totally reversible, whereas that of A23187 was irreversible. Ionomycin (5 μmol/l) had no effect on EGTA-induced E2 secretion in the absence of FSH, but reduced EGTA-provoked E2 secretion by 59% in the presence of FSH (8 IU/l). Similarly, forskolin- and dibutyryl cAMP-provoked E2 production was inhibited 46-50% by ionomycin (5 μmol/l). We conclude that FSH-induced E2 secretion from immature rat Sertoli cells is modulated by intra- and extracellular Ca2+.


1965 ◽  
Vol 43 (3) ◽  
pp. 431-436 ◽  
Author(s):  
M. Samel ◽  
A. Caputa

In newborn rats the mother provokes the emptying of the urinary bladder by stimulating the perineum with her tongue. The possibility that mothers may thereby ingest the urine of their young has been studied by means of 131I on nine litters of rats aged 10 to 29 days. The results indicate that a considerable quantity of 131I administered intraperitoneally to 10- and 18-day-old rats, which were then reunited with their mothers for 4 hours, reappears in the organism of uninjected nurslings after passing through the organism of the mother. The amount of 131I transferred from injected rats into the bodies of isolated uninjected rats of the same litter decreased during the period of weaning. The observed recirculation of 131I between immature rats and their mothers in both directions may represent a saving mechanism which might include several other substances and would compensate for their loss via the milk, and suggests a new aspect of maternal–neonatal interrelationship which appears as a continuation of the state existing in utero.


Sign in / Sign up

Export Citation Format

Share Document