scholarly journals Inhibition of rat brain tryptophan metabolism by ethanol withdrawal and possible involvement of the enhanced liver tryptophan pyrrolase activity

1980 ◽  
Vol 192 (2) ◽  
pp. 449-455 ◽  
Author(s):  
A A B Badawy ◽  
N F Punjani ◽  
C M Evans ◽  
M Evans

1. Chronic ethanol administration to rats was previously shown to enhance brain 5-hydroxytryptamine synthesis by increasing the availability of circulating tryptophan to the brain secondarily to the NAD(P)H-mediated inhibition of liver tryptophan pyrrolase activity. 2. At 24h after ethanol withdrawal, all the above effects were observed because liver [NAD(P)H] was still increased. By contrast, all aspects of liver and brain tryptophan metabolism were normal at 12 days after withdrawal. 3. At 7–9 days after withdrawal, brain 5-hydroxytryptamine synthesis was decreased, as was tryptophan availability to the brain. Liver tryptophan pyrrolase activity at these time-intervals was maximally enhanced. 4. Administration of nicotinamide during the withdrawal phase not only abolished the withdrawal-induced enhancement of tryptophan pyrrolase activity on day 8, but also maintained the inhibition previously caused by ethanol. Under these conditions, the withdrawal-induced decreases in brain 5-hydroxytryptamine synthesis and tryptophan availability to the brain were abolished, and both functions were enhanced. Nicotinamide alone exerted similar effects in control rats. 5. It is suggested that ethanol withdrawal inhibits brain 5-hydroxytryptamine synthesis by decreasing tryptophan availability to the brain secondarily to the enhanced liver tryptophan pyrrolase activity. 6. The results are discussed in relation to the possible involvement of 5-hydroxytryptamine in dependence on ethanol and other drugs.

1979 ◽  
Vol 178 (3) ◽  
pp. 575-580 ◽  
Author(s):  
A A Badawy ◽  
N F Punjani ◽  
M Evans

1. Chronic ethanol administration enhances rat brain 5-hydroxytryptamine synthesis by increasing the availability of circulating tryptophan to the brain. This increased availability is not insulin-mediated or lipolysis-dependent. 2. Under these conditions, tryptophan accumulates in the liver and apo-(tryptophan pyrrolase) activity is completely abolished, but could be restored by administration of regenerators of liver NAD+ and/or NADP+. 3. All four regenerators used (fructose, Methylene Blue, phenazine methosulphate and sodium pyruvate) prevented the ethanol-induced increase in liver tryptophan concentration and the increased availability of tryptophan to the brain. 4. It is suggested that the enhancement of brain tryptophan metabolism by chronic ethanol administration is caused by the decreased hepatic tryptophan pyrrolase activity. The results are briefly discussed in relation to previous work with ethanol. 5. Fructose enhances the conversion of tryptophan into 5-hydroxyindol-3-ylacetic acid in brains of ethanol-treated rats, whereas Methylene Blue inhibits this conversion in both control and ethanol-treated animals.


1979 ◽  
Vol 184 (1) ◽  
pp. 165-168 ◽  
Author(s):  
N F Punjani ◽  
A A B Badawy ◽  
M Evans

Chronic administration of pyrazole in the diet of rats does not cause toxicity and prevents the chronic effects of ethanol on: (1) the redox states of the hepatic NAD(P) couples; (2) liver tryptophan pyrrolase activity; (3) brain tryptophan and 5-hydroxytryptamine metabolism.


1974 ◽  
Vol 37 (2) ◽  
pp. 91-100 ◽  
Author(s):  
D. Frankel ◽  
J. M. Khanna ◽  
H. Kalant ◽  
A. E. LeBlanc

Sign in / Sign up

Export Citation Format

Share Document