scholarly journals Inhibition of microsomal lipid peroxidation by glutathione and glutathione transferases B and AA. Role of endogenous phospholipase A2

1984 ◽  
Vol 220 (1) ◽  
pp. 243-252 ◽  
Author(s):  
K H Tan ◽  
D J Meyer ◽  
J Belin ◽  
B Ketterer

Lipid peroxidation in vitro in rat liver microsomes (microsomal fractions) initiated by ADP-Fe3+ and NADPH was inhibited by the rat liver soluble supernatant fraction. When this fraction was subjected to frontal-elution chromatography, most, if not all, of its inhibitory activity could be accounted for by the combined effects of two fractions, one containing Se-dependent glutathione (GSH) peroxidase activity and the other the GSH transferases. In the latter fraction, GSH transferases B and AA, but not GSH transferases A and C, possessed inhibitory activity. GSH transferase B replaced the soluble supernatant fraction as an effective inhibitor of lipid peroxidation in vitro. If the microsomes were pretreated with the phospholipase A2 inhibitor p-bromophenacyl bromide, neither the soluble supernatant fraction nor GSH transferase B inhibited lipid peroxidation in vitro. Similarly, if all microsomal enzymes were heat-inactivated and lipid peroxidation was initiated with FeCl3/sodium ascorbate neither the soluble supernatant fraction nor GSH transferase B caused inhibition, but in both cases inhibition could be restored by the addition of porcine pancreatic phospholipase A2 to the incubation. It is concluded that the inhibition of microsomal lipid peroxidation in vitro requires the consecutive action of phospholipase A2, which releases fatty acyl hydroperoxides from peroxidized phospholipids, and GSH peroxidases, which reduce them. The GSH peroxidases involved are the Se-dependent GSH peroxidase and the Se-independent GSH peroxidases GSH transferases B and AA.

1982 ◽  
Vol 208 (1) ◽  
pp. 129-140 ◽  
Author(s):  
H Esterbauer ◽  
K H Cheeseman ◽  
M U Dianzani ◽  
G Poli ◽  
T F Slater

1. Methods using t.l.c. and high-pressure liquid chromatography (h.p.l.c.) have been used to separate the complex variety of substances possessing a carbonyl function that are produced during lipid peroxidation. 2. The major type of lipid peroxidation studied was the ADP-Fe2+-stimulated peroxidation of rat liver microsomal phospholipids. Preliminary separation of the polar and non-polar products was achieved by t.l.c.: further separation and identification of individual components was performed by h.p.l.c. Estimations were performed on microsomal pellets and the supernatant mixture after incubation of microsomes for 30 min at 37 degrees C. 3. The polar fraction was larger than the non-polar fraction when expressed as nmol of carbonyl groups/g of liver. In the non-polar supernatant fraction the major contributors were n-alkanals (31% of the total), alpha-dicarbonyl compounds (22%) and 4-hydroxyalkenals (37%) with the extraction method used. 4. Major individual contributors to the non-polar fraction were found to be propanal, 4-hydroxynonenal, hexanal and oct-2-enal. Other components identified include butanal, pent-2-enal, hex-2-enal, hept-2-enal, 4-hydroxyoctenal and 4-hydroxyundecenal. The polar carbonyl fraction was less complex than the non-polar fraction, although the identities of the individual components have not yet been established. 5. Since these carbonyl compounds do not react significantly in the thiobarbituric acid reaction, which largely demonstrates the presence of malonaldehyde, it is concluded that considerable amounts of biologically reactive carbonyl derivatives are released in lipid peroxidation and yet may not be picked up by the thiobarbituric acid reaction.


1985 ◽  
Vol 33 (2) ◽  
pp. 810-817
Author(s):  
TARO OGISO ◽  
MASAHIRO IWAKI ◽  
EIJI TAMAKI ◽  
KAZUTOSHI MORIKAWA ◽  
YURIKO NAKAOKA

1968 ◽  
Vol 106 (1) ◽  
pp. 155-160 ◽  
Author(s):  
T F Slater

1. The effects of several phenothiazine derivatives on lipid-peroxidation systems in rat liver microsomes were studied and the results are considered in relation to the hepatotoxic action of carbon tetrachloride. 2. The lipid-peroxidation system coupled to NADPH2 oxidation and stimulated by an ADP–Fe2+ mixture is strongly inhibited in vitro by promethazine (50% inhibition at 29μm). Chlorpromazine and Stelazine also inhibit the peroxidation system but are less effective than promethazine. 3. The effects of promethazine on three other systems involving oxygen uptake (sulphite oxidation, orcinol oxidation and mitochondrial succinate oxidation) were also studied. Promethazine does not inhibit these systems to the same extent as it does the NADPH2–ADP–Fe2+ lipid-peroxidation system. 4. Promethazine also produces an inhibition of the NADPH2–ADP–Fe2+ system in liver microsomes after administration in vivo. It is concluded that the inhibition involves the interaction of the drug (or a metabolite of it) with the microsomal electron-transport chain. 5. Several other compounds known to protect the rat against liver necrosis after the administration of carbon tetrachloride were tested for inhibitory action on the NADPH2–ADP–Fe2+ system. No clear correlation was observed between effectiveness in vivo as a protective agent and inhibitory effects on the NADPH2–ADP–Fe2+ system in vitro. 6. Promethazine was found to inhibit the stimulation of lipid peroxidation produced in rat liver microsomes by low concentrations of carbon tetrachloride. This effect occurs at a concentration similar to that observed in vivo after administration of a normal clinical dose.


Fitoterapia ◽  
2011 ◽  
Vol 82 (8) ◽  
pp. 1222-1230 ◽  
Author(s):  
Wei Zhou ◽  
Liu-qing Di ◽  
Jin-jun Shan ◽  
Xiao-lin Bi ◽  
Le-tian Chen ◽  
...  

2008 ◽  
Vol 46 (5) ◽  
pp. 419-423 ◽  
Author(s):  
R. Zhang ◽  
C.-h. Liu ◽  
T.-l. Huang ◽  
N.-s. Wang ◽  
S.-q. Mi

Author(s):  
Xiangli Zhang ◽  
Qin Shen ◽  
Yi Wang ◽  
Leilei Zhou ◽  
Qi Weng ◽  
...  

Background: E2 (Camptothecin - 20 (S) - O- glycine - deoxycholic acid), and G2 (Camptothecin - 20 (S) - O - acetate - deoxycholic acid) are two novel bile acid-derived camptothecin analogues by introducing deoxycholic acid in 20-position of CPT(camptothecin) with greater anticancer activity and lower systematic toxicity in vivo. Objective: We aimed to investigate the metabolism of E2 and G2 by Rat Liver Microsomes (RLM). Methods: Phase Ⅰ and Phase Ⅱ metabolism of E2 and G2 in rat liver microsomes were performed respectively, and the mixed incubation of phase I and phase Ⅱ metabolism of E2 and G2 was also processed. Metabolites were identified by liquid chromatographic/mass spectrometry. Results: The results showed that phase I metabolism was the major biotransformation route for both E2 and G2. The isoenzyme involved in their metabolism had some difference. The intrinsic clearance of G2 was 174.7mL/min. mg protein, more than three times of that of E2 (51.3 mL/min . mg protein), indicating a greater metabolism stability of E2. 10 metabolites of E2 and 14 metabolites of G2 were detected, including phase I metabolites (mainly via hydroxylations and hydrolysis) and their further glucuronidation products. Conclusion: These findings suggested that E2 and G2 have similar biotransformation pathways except some difference in the hydrolysis ability of the ester bond and amino bond from the parent compounds, which may result in the diversity of their metabolism stability and responsible CYPs(Cytochrome P450 proteins).


Sign in / Sign up

Export Citation Format

Share Document