soluble supernatant
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

1994 ◽  
Vol 49 (1-2) ◽  
pp. 63-69 ◽  
Author(s):  
M. Stolz ◽  
D. Dörnemann

Phosphoserine aminotransferase (EC 2.6.1.52), an enzyme of the “phosphorylated pathway” leading to the formation of serine, was purified from Scenedesmus obliquus, mutant C-2 A′. Purification started from the soluble supernatant of a crude cell homogenate and included different affinity and DEAE chromatographic techniques, as well as gel filtration. The purified phosphoserine aminotransferase was enriched 1537-fold and identified to be a homodimer with subunit molecular masses of 40 kDa, each. The absorption spectrum is consistent with the presence of pyridoxal-5-phosphate as cofactor. From the purified enzyme 18 amino acids of the N-terminus could be determined, showing at least 67% homology with the serC gene encoding phosphoserine aminotransferases from bacterial organisms.


1989 ◽  
Vol 108 (3) ◽  
pp. 965-971 ◽  
Author(s):  
P Denoulet ◽  
G Filliatreau ◽  
B de Néchaud ◽  
F Gros ◽  
L Di Giamberardino

The axonal transport of the diverse isotubulins in the motor axons of the rat sciatic nerve was studied by two-dimensional polyacrylamide gel electrophoresis after intraspinal injection of [35S]methionine. 3 wk after injection, the nerve segments carrying the labeled axonal proteins of the slow components a (SCa) and b (SCb) of axonal transport were homogenized in a cytoskeleton-stabilizing buffer and two distinct fractions, cytoskeletal (pellet, insoluble) and soluble (supernatant), were obtained by centrifugation. About two-thirds of the transported-labeled tubulin moved with SCa, the remainder with SCb. In both waves, tubulin was found to be associated mainly with the cytoskeletal fraction. The same isoforms of tubulin were transported with SCa and SCb; however, the level of a neuron-specific beta-tubulin subcomponent, termed beta', composed of two related isotubulins beta'1 and beta'2, was significantly greater in SCb than in SCa, relative to the other tubulin isoforms. In addition, certain specific isotubulins were unequally distributed between the cytoskeletal and the soluble fractions. In SCa as well as in SCb, alpha''-isotubulins were completely soluble in the motor axons. By contrast, alpha''' and beta'2-isotubulins, both posttranslationally modified isoforms, were always recovered in the cytoskeletal fraction and thus may represent isotubulins restricted to microtubule polymers. The different distribution of isotubulins suggests that a recruitment of tubulin isoforms, including specific posttranslational modifications of defined isoforms (such as, at least, phosphorylation of beta' and acetylation of alpha'), might be involved in the assembly of distinct subsets of axonal microtubules displaying differential properties of stability, velocity and perhaps of function.


1988 ◽  
Vol 254 (3) ◽  
pp. 841-845 ◽  
Author(s):  
K H Tan ◽  
D J Meyer ◽  
N Gillies ◽  
B Ketterer

DNA peroxidized by exposure to ionizing radiation in the presence of oxygen is a substrate for the Se-independent GSH peroxidase activity of several GSH transferases, GSH transferases 5-5, 3-3 and 4-4 being the most active in the rat liver soluble supernatant fraction (500, 35 and 20 nmol/min per mg of protein respectively) and GSH transferases mu and pi the most active, so far found, in the human liver soluble supernatant fraction (80 and 10 nmol/min per mg respectively). Although the GSH transferase content of the rat nucleus was found to be much lower than that of the soluble supernatant, nuclear GSH transferases are likely to be more important in the detoxification of DNA hydroperoxide produced in vivo. Two nuclear fractions were studied, one extracted with 0.075 M-saline/0.025 M-EDTA, pH 8.0, and the other extracted from the residue with 8.5 M-urea. The saline/EDTA fraction contained subunits 1, 2, 3, 4 and a novel subunit, similar but not identical to 5, provisionally referred to as 5*, in the proportions 40:25:5:5:25 respectively. The 8.5 M-urea-extracted fraction contained principally subunit 5* together with a small amount of subunit 6 in the proportion 95:5 respectively. GSH transferase 5*-5* purified from the 8.5 M-urea extract has the highest activity towards DNA hydroperoxide of any GSH transferase so far studied (1.5 mumol/min per mg). A Se-dependent GSH peroxidase fraction from rat liver was also active towards DNA hydroperoxide; however, since this enzyme accounts for only 14% of the GSH peroxidase activity detectable in the nucleus, GSH transferases may be the more important source of this activity. The possible role of GSH transferases, in particular GSH transferase 5*-5*, in DNA repair is discussed.


1986 ◽  
Vol 103 (2) ◽  
pp. 621-630 ◽  
Author(s):  
T Ueno ◽  
E D Korn

Two Triton-insoluble fractions were isolated from Acanthamoeba castellanii. The major non-membrane proteins in both fractions were actin (30-40%), myosin II (4-9%), myosin I (1-5%), and a 55-kD polypeptide (10%). The 55-kD polypeptide did not react with antibodies against tubulins from turkey brain, paramecium, or yeast. All of these proteins were much more concentrated in the Triton-insoluble fractions than in the whole homogenate or soluble supernatant. The 55-kD polypeptide was extracted with 0.3 M NaCl, fractionated by ammonium sulfate, and purified to near homogeneity by DEAE-cellulose and hydroxyapatite chromatography. The purified protein had a molecular mass of 110 kD and appeared to be a homodimer by isoelectric focusing. The 110-kD dimer bound to F-actin with a maximal binding stoichiometry of 0.5 mol/mol of actin (1 mol of 55-kD subunit/mol of actin). Although the 110-kD protein enhanced the sedimentation of F-actin, it did not affect the low shear viscosity of F-actin solutions nor was bundling of F-actin observed by electron microscopy. The 110-kD dimer protein inhibited the actin-activated Mg2+-ATPase activities of Acanthamoeba myosin I and myosin II in a concentration-dependent manner. By indirect immunofluorescence, the 110-kD protein was found to be localized in the peripheral cytoplasm near the plasma membrane which is also enriched in F-actin filaments and myosin I.


1985 ◽  
Vol 229 (3) ◽  
pp. 679-685 ◽  
Author(s):  
R L Hopfer ◽  
J A Alhadeff

The pellet-associated portion of human brain alpha-L-fucosidase (which represents approx. 20% of the homogenate activity) was solubilized with 0.5% (w/v) Triton X-100, characterized with regard to several properties and compared with the corresponding properties of the soluble supernatant-fluid enzyme in an attempt to find a second alpha-L-fucosidase in human brain. The solubilized and soluble alpha-L-fucosidase activities exhibited complete stability after storage at 2-4 degrees C for up to 29 days, comparable thermostability after preincubation at 50 degrees C, comparable apparent Km values (0.07-0.08 mM) for 4-methylumbelliferyl alpha-L-fucopyranoside, comparable hydrophobicity, comparable isoelectric-focusing profiles (six major forms, with pI values between 4.5 and 5.8) and comparable immunoprecipitation curves (with the IgG fraction of antisera prepared against human liver alpha-L-fucosidase). Differences in three properties were found between solubilized and soluble alpha-L-fucosidase activities: the solubilized activity was less stable to storage at −20 degrees C, had a 0.5-pH-unit neutral shift in its pH optimum (6.0) and had smaller Mr forms after gel filtration on Sephadex G-200. The overall results indicate that the pellet-associated and soluble portions of human brain alpha-L-fucosidase are quite similar in most of their properties. Thus there is still no compelling evidence for the existence of a second mammalian alpha-L-fucosidase.


1984 ◽  
Vol 220 (1) ◽  
pp. 243-252 ◽  
Author(s):  
K H Tan ◽  
D J Meyer ◽  
J Belin ◽  
B Ketterer

Lipid peroxidation in vitro in rat liver microsomes (microsomal fractions) initiated by ADP-Fe3+ and NADPH was inhibited by the rat liver soluble supernatant fraction. When this fraction was subjected to frontal-elution chromatography, most, if not all, of its inhibitory activity could be accounted for by the combined effects of two fractions, one containing Se-dependent glutathione (GSH) peroxidase activity and the other the GSH transferases. In the latter fraction, GSH transferases B and AA, but not GSH transferases A and C, possessed inhibitory activity. GSH transferase B replaced the soluble supernatant fraction as an effective inhibitor of lipid peroxidation in vitro. If the microsomes were pretreated with the phospholipase A2 inhibitor p-bromophenacyl bromide, neither the soluble supernatant fraction nor GSH transferase B inhibited lipid peroxidation in vitro. Similarly, if all microsomal enzymes were heat-inactivated and lipid peroxidation was initiated with FeCl3/sodium ascorbate neither the soluble supernatant fraction nor GSH transferase B caused inhibition, but in both cases inhibition could be restored by the addition of porcine pancreatic phospholipase A2 to the incubation. It is concluded that the inhibition of microsomal lipid peroxidation in vitro requires the consecutive action of phospholipase A2, which releases fatty acyl hydroperoxides from peroxidized phospholipids, and GSH peroxidases, which reduce them. The GSH peroxidases involved are the Se-dependent GSH peroxidase and the Se-independent GSH peroxidases GSH transferases B and AA.


1982 ◽  
Vol 28 (11) ◽  
pp. 1219-1225 ◽  
Author(s):  
Kevin L. McKinney ◽  
Paul A. Rebers ◽  
Richard B. Rimler

The immunogenicity of antigenic fractions obtained by the extraction of Pasteurella multocida strain X-73 (serotype 1) with potassium thiocyanate (KSCN) was determined in chickens and mice. The initial KSCN extract was centrifuged at 105 000 × g, and the antigens were separated into a particulate fraction (40p) and a soluble supernatant fraction (40s). The ultracentrifuged fractions were further resolved by preparative electrofocusing. The 40p fraction was resolved into two subgroups having isoelectric points of 3.5–3.9 and 5.5–6.0; the 40s fraction was resolved into five subgroups ranging in isoelectric points from 4.4 to 9.0. The 40p fractions were antigenically similar and contained lipopolysaccharide (LPS) and protein. The 40s fractions were antigenically distinct from the 40p fractions and from each other; they contained proteins and polysaccharides but no LPS. The 40p antigens were strongly immunogenic in mice and chickens, whereas the 40s antigens were weakly immunogenic in chickens and not immunogenic in mice. The incorporation of Freund's complete adjuvant increased the immunogenicity of the 40s antigens in chickens. The 40p antigens induced greater frequencies of serological responses in chickens than the 40s antigens as detected by counterimmunoelectrophoresis and immunodiffusion. This suggested that the increased protection associated with the 40p antigens may have been the result of better antibody response. The toxicity of all the fractions was evaluated by determination of lethality for 10-day-old chicken embryos because of the sensitivity and reliability of the test. The 40p fraction had an LD50 = 0.38 μg, and the 40s fraction had an LD50 = 2.5 μg. Since the 40s fraction contained no detectable LPS, it is likely that two toxins are present, one which contains LPS and one which does not.


1982 ◽  
Vol 2 (11) ◽  
pp. 861-865 ◽  
Author(s):  
C. Edlund ◽  
Å. Elhammer ◽  
G. Dallner

The distribution, synthesis transport, and glycosylation of rat-liver DT-diaphorase has been investigated. The enzyme could be isolated using specific antibodies, mainly from the soluble supernatant but also from microsomal vesicles, Golgi membrane, and mitochondria. 40% of the microsomal enzyme was located in the lumen or on the interior side of the membrane, the rest remaining as an integral non-extractable part of the membrane. Synthesis of DT-diaphorase takes place on both free and bound ribosomes, although it was found to be transported in a sequential manner from the rough to the smooth endoplasmic reticulum and also subsequently to the mitochondria. The rough and smooth microsomal DT-diaphorase contains covalently bound carbohydrate, but no sugar moiety could be detected bound to the cytoplasmic form of the enzyme.


1981 ◽  
Vol 200 (2) ◽  
pp. 225-229
Author(s):  
R C Beesley

Brush-border-membrane vesicles isolated from hamster ileum were incubated with either papain or Pronase P and subsequently centrifuged to obtain soluble (supernatant) and insoluble (pellet) fractions. Papain (4 units/ml) solubilized 95--100% of the sucrase and leucine naphthylamide-hydrolysing activities but only 30% of the alkaline phosphatase. Digestion with papain also resulted in the solubilization of more than 75% of the ileal receptor for intrinsic factor-vitamin B-12 complex with a corresponding decrease in receptor activity in the pellet. Essentially 100% of the receptor activity was recovered. In contrast, digestion with Pronase P resulted in a decrease in total receptor activity. Papain-solubilized receptor was not sedimented by centrifugation at 105 000 g for 90 min and was eluted in the included volume of Sepharose 6B. Like the binding to more intact preparations, binding of intrinsic factor-vitamin B-12 complex to papain-solubilized receptor was rapid, reaching 50% of maximum in 8 min, and required Ca2+. Although Mg2+ could not completely substitute for Ca2+, Mg2+ did stimulate Ca2+-dependent binding at low Ca2+ concentrations. These results demonstrate that the ileal receptor for intrinsic factor-vitamin B-12 complex can be solubilized with papain, and suggest that papain solubilization may be a useful first step in the isolation and purification of this receptor.


Sign in / Sign up

Export Citation Format

Share Document