scholarly journals Purification and characterization of hepatic glutathione S-transferases of rhesus monkeys. A family of enzymes similar to the human hepatic glutathione S-transferases

1988 ◽  
Vol 251 (1) ◽  
pp. 81-88 ◽  
Author(s):  
R M Hoesch ◽  
T D Boyer

Thirteen forms of glutathione S-transferase were purified from the livers of female rhesus monkeys (Macaque mulatta). Most (74.7%) of the activity in the hepatic cytosol adhered well to the GSH affinity column and could be eluted only with the addition of GSH to the eluting buffer. The predominant isoenzymes (n = 5) in this ‘high-affinity’ fraction had alkaline pI values (greater than 9.0) and contained a subunit with an Mr value of 24,000. All of these isoenzymes had high organic peroxidase activity and, on the basis of amino acid analysis, substrate specificities and affinity for non-substrate ligands, appear to belong to the family of glutathione S-transferases that have been termed alpha [Mannervik, Alin, Guthenberg, Jensson, Tahir, Warholm & Jörnvall (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 7202-7206]. Also within the high-affinity fraction was an isoenzyme with an acidic (5.8) pI value. This acidic isoenzyme was composed of a unique subunit (Mr 23,000). The N-terminal sequence (ten residues) of this acidic enzyme was identical with that of a human form that is referred to as pi. The predominant form of enzyme in the ‘low-affinity’ (eluted from the GSH affinity column with an increase in buffer pH) fraction was a homodimer of a 26,000-Mr subunit. It had an alkaline pI (greater than 9.0) but it lacked organic peroxidase activity. The N-terminal sequence (ten residues) of this enzyme was identical with that of a human enzyme referred to as mu. The substrate specificities and affinity for non-substrate ligands of this monkey enzyme also were similar to those of the human enzyme. In conclusion, the liver cytosol of rhesus monkeys contains a number of glutathione S-transferase isoenzymes that are very similar to the human hepatic enzymes.

2002 ◽  
Vol 362 (2) ◽  
pp. 329-337 ◽  
Author(s):  
John G. VONTAS ◽  
Graham J. SMALL ◽  
Dimitra C. NIKOU ◽  
Hilary RANSON ◽  
Janet HEMINGWAY

A novel glutathione S-transferase (GST)-based pyrethroid resistance mechanism was recently identified in Nilaparvata lugens [Vontas, Small and Hemingway (2001) Biochem. J. 357, 65–72]. To determine the nature of GSTs involved in conferring this resistance, the GSTs from resistant and susceptible strains of N. lugens were partially purified by anion exchange and affinity chromatography. The majority of peroxidase activity, previously correlated with resistance, was confined to the fraction that bound to the affinity column, which was considerably elevated in the resistant insects. A cDNA clone encoding a GST (nlgst1-1) —the first reported GST sequence from Hemiptera with up to 54% deduced amino-acid identity with other insect class I GSTs—was isolated from a pyrethroid-resistant strain. Northern analysis showed that nlgst1-1 was overexpressed in resistant insects. nlgst1-1 was expressed in Escherichia coli, purified and characterized. The ability of the recombinant protein to bind to the S-hexylglutathione affinity matrix, its substrate specificities and its immunological properties confirmed that this GST was one from the elevated subset of N. lugens GSTs. Peroxidase activity of the recombinant nlgst1-1 indicated that it had a role in resistance, through detoxification of lipid peroxidation products induced by pyrethroids. Southern analysis of genomic DNA from the resistant and susceptible strains indicated that GST-based insecticide resistance may be associated with gene amplification in N. lugens.


1982 ◽  
Vol 205 (1) ◽  
pp. 213-217 ◽  
Author(s):  
R P Saneto ◽  
Y C Awasthi ◽  
S K Srivastava

We have purified two isoenzymes of glutathione S-transferase from bovine retina to apparent homogeneity through a combination of gel-filtration chromatography, affinity chromatography and isoelectric focusing. The more anionic (pI = 6.34) and less anionic (pI = 6.87) isoenzymes were comparable with respect to kinetic and structural parameters. The Km for both substrates, reduced glutathione and 1-chloro-2,4-dinitrobenzene, bilirubin inhibition of glutathione conjugation to 1-chloro-2,4-dinitrobenzene, 1-chloro-2,4-dinitrobenzene inactivation of enzyme activity and molecular weight were similar. However, pH optimum and energy of activation were found to differ considerably. Retina was found to have no selenium-dependent glutathione peroxidase activity. The total glutathione peroxidase activity fractionated with the transferases in the gel-filtration range of mol.wt. 49000 and expressed activity with only organic hydroperoxides as substrate. Only the more anionic isoenzyme expressed both transferase and peroxidase activity.


1983 ◽  
Vol 211 (2) ◽  
pp. 523-526 ◽  
Author(s):  
P I N Ramage ◽  
I A Nimmo

1. The basic glutathione S-transferases from rainbow-trout liver were more stable than the acidic ones. 2. The apparent pI values of these enzymes were lowered when they were eluted from a glutathione affinity column by reduced glutathione at pH 8.85. 3. The pI effect was not a function of the high pH alone, was diminished under conditions less favourable to glutathione oxidation, and did not occur when S-hexylglutathione affinity chromatography was used instead.


1981 ◽  
Vol 198 (1) ◽  
pp. 211-217 ◽  
Author(s):  
Coral A. Lamartiniere

Hepatic glutathione S-transferase activities were determined with the substrates 1,2-dichloro-4-nitrobenzene and 1-chloro-2,4-dinitrobenzene. Sexual differentiation of glutathione S-transferase activities is not evident during the prepubertal period, but glutathione conjugation with 1,2-dichloro-4-nitrobenzene is 2–3-fold greater in adult males than in females. Glutathione conjugation with 1-chloro-2,4-dinitrobenzene is slightly higher in adult males than adult females. No change in activity was observed after postpubertal gonadectomy of males or females. Neonatal castration of males results in a significant decrease in glutathione conjugation with 1,2-dichloro-4-nitrobenzene. Hypophysectomy, or hypophysectomy followed by gonadectomy did result in significantly higher glutathione S-transferase activities in both sexes. These increases can be reversed by implanting an adult male or female pituitary or four prepubertal pituitaries under the kidney capsule. Postpubertal sexual differentiation of glutathione S-transferase activities is neither dependent on pituitary sexual differentiation nor pituitary maturation. Prolactin concentrations are inversely related to glutathione S-transferase activities in hypophysectomized rats with or without ectopic pituitaries. Somatotropin exogenously administered to hypophysectomized rats results in decreased glutathione S-transferase activities, whereas prolactin has no effect. Adult male rats treated neonatally with monosodium l-glutamate to induce arcuate nucleus lesions of the hypothalamus have decreased glutathione S-transferase activities towards 1,2-dichloro-4-nitrobenzene and decreased somatotropin concentrations. Our experiments suggests that sexual differentiation of hepatic glutathione S-transferase is a result of a hypothalamic inhibiting factor in the male (absent in the female). This postpubertally expressed inhibiting factor acts on the pituitary to prevent secretion of a pituitary inhibiting factor (autonomously secreted by the female), resulting in higher glutathione S-transferase activities in the adult male than the adult female.


1990 ◽  
Vol 269 (3) ◽  
pp. 609-613 ◽  
Author(s):  
B van Ommen ◽  
J J P Bogaards ◽  
W H M Peters ◽  
B Blaauboer ◽  
P J van Bladeren

Human hepatic glutathione S-transferase (GST) subunits were characterized and quantified with the aid of a recently developed h.p.l.c. method. In 20 hepatic tissue specimens the absolute amounts of the basic Class Alpha subunits B1 and B2, the near-neutral Class Mu subunits mu and psi and the acidic subunit pi were determined. The average total amount of GST was 37 micrograms/mg of cytosolic protein, with the Class Alpha GST being the predominant class (84% of total GSTs), and pi as the sole representative of the Class Pi GSTs present in the lowest concentration (4% of total GSTs). Large interindividual differences were observed for all subunits, with variations up to 27-fold, depending on the subunit. For the Class Alpha GST-subunits B1 and B2, a biphasic ratio was observed. The genetic polymorphism of the subunits mu and psi was confirmed by h.p.l.c. analysis, and correlated with the enzymic glutathione conjugation of trans-stilbene oxide and with Western blotting of cytosols, using a monoclonal anti-(Class Mu GST) antibody. Of the 20 livers examined, ten contained only mu, whereas the occurrence of psi alone, and the combination of mu and psi, were found in only one liver each.


1984 ◽  
Vol 224 (1) ◽  
pp. 335-338 ◽  
Author(s):  
S V Singh ◽  
Y C Awasthi

Two types of 25 000-Mr subunits are present in rat lung glutathione S-transferase I (pI 8.8). These subunits, designated Yc and Yc', are immunologically and functionally distinct from each other. The homodimers YcYc (pI 10.4) and Yc'Yc' (pI 7.6) obtained by hybridization in vitro of the two subunits of glutathione S-transferase I (pI 8.8) were isolated and characterized. Results of these studies indicate that only the Yc subunits express glutathione peroxidase activity and cross-react with the antibodies raised against glutathione S-transferase B (YaYc) or rat liver. The Yc' subunits do not express glutathione peroxidase activity and do not cross-react with the antibodies raised against glutathione S-transferase B of rat liver. The amino acid compositions of these two subunits are also different. These two subunits can also be separated by the two-dimensional gel electrophoresis of glutathione S-transferase I (pI 8.8) of rat lung.


1984 ◽  
Vol 221 (3) ◽  
pp. 609-615 ◽  
Author(s):  
S V Singh ◽  
C A Partridge ◽  
Y C Awasthi

Two immunologically distinct types of 22000-Mr subunits are present in rat lung glutathione S-transferases. One of these subunits is probably similar to Ya subunits of rat liver glutathione S-transferases, whereas the other subunit Ya′ is immunologically distinct. Glutathione S-transferase II (pI7.2) of rat lung is a heterodimer (YaYa′) of these subunits, and glutathione S-transferase VI (pI4.8) of rat lung is a homodimer of Ya′ subunits. On hybridization in vitro of the subunits of glutathione S-transferase II of rat lung three active dimers having pI values 9.4, 7.2 and 4.8 are obtained. Immunological properties and substrate specificities indicate that the hybridized enzymes having pI7.2 and 4.8 correspond to glutathione S-transferases II and VI of rat lung respectively.


1976 ◽  
Vol 160 (2) ◽  
pp. 231-236 ◽  
Author(s):  
B F Hales ◽  
A H Neims

The postnatal development in male Sprague-Dawley rats of hepatic glutathione S-transferase B (ligandin) in relation to the other glutathione S-transferases is described. The concentration of glutathione S-transferase B in 1-day-old male rats is about one-fifth of that in adult animals. The enzyme reaches adult concentrations 4-5 weeks later. When assessed by substrate specificity or immunologically, the proportion of transferase B relative to the other glutathione S-transferases is high during the first week after birth. At this age, 67.5% of the transferase activity towards 1-chloro-2,4-dinitrobenzene is immunoprecipitable by anti-(transferase B), compared with about 50% in adults and older pups. Between the second and the fifth postnatal week, the fraction of transferase B increases in parallel fashion with the other transferases in hepatic cytosol. Neither L-thyroxine nor cortisol induce a precocious increase in glutathione S-transferase activity. Phenobarbital did induce transferase activity towards 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene in both pups and adults. The extent of induction by phenobarbital was a function of basal activity during development such that the percentage stimulation remained constant from 5 days postnatally to adulthood.


Sign in / Sign up

Export Citation Format

Share Document