scholarly journals Non-selective cation channels in basolateral-membrane vesicles from pars recta of rabbit kidney proximal tubule

1990 ◽  
Vol 272 (3) ◽  
pp. 839-842 ◽  
Author(s):  
J Blokkebak-Poulsen ◽  
M I Sheikh ◽  
C Jacobsen

The characteristics of 86Rb+ fluxes through conductive channels in basolateral-membrane vesicles isolated from pars recta of rabbit kidney proximal tubule were investigated. In RbCl-, KCl- and NaCl-loaded vesicles a transient and almost equal accumulation of 86Rb+ was observed. The uptakes of 86Rb+ were inhibited to the same extent by 10 mM-BaCl2 in all loadings. The accumulation was driven by an electrical diffusion potential. The 86Rb+ flux was dependent on intravesicular Ca2+. Increasing concentrations of Ca2+ gradually decreased the 86Rb+ uptake. At 10 microM-Ca2+ the radioisotope flux was below 20% of control. The vesicles containing the channel showed very low selectivity among the univalent cations K+, Rb+, Li+, Na+ and choline+.

1992 ◽  
Vol 286 (1) ◽  
pp. 103-110 ◽  
Author(s):  
H Jessen ◽  
M I Sheikh

1. The mechanism of the renal transport of L-tryptophan by basolateral and luminal membrane vesicles prepared from either the pars convoluta or the pars recta of the rabbit proximal tubule was studied. The uptake of L-tryptophan by basolateral membrane vesicles from the pars convoluta was found to be an Na(+)-dependent transport event. The Na(+)-conditional influx of the amino acid was stimulated in the presence of an inwardly directed H+ gradient. Lowering the pH without an H+ gradient had no effect, indicating that L-tryptophan is co-transported with H+. 3. On the other hand, no transient accumulation of L-tryptophan was observed in the presence or absence of Na+ in basolateral membrane vesicles from the pars recta. 4. In luminal membrane vesicles from the pars recta, the transient Na(+)-dependent accumulation of L-tryptophan occurred via a dual transport system. In addition, an inwardly directed H+ gradient could drive the uphill transport of L-tryptophan into these vesicles in both the presence and the absence of an Na+ gradient. 5. By contrast, the uptake of L-tryptophan by luminal membrane vesicles from the pars convoluta was a strictly Na(+)-dependent and electrogenic transport process, mediated by a single transport component. 6. Investigation of the coupling ratio in luminal membrane vesicles suggested that 1 Na+:1 L-tryptophan are co-transported in the pars convoluta. In the pars recta, examination of the stoichiometry indicated that approx. 1 H+ and 2 Na+ (high affinity) or 1 Na+ (low affinity) are involved in the uptake of L-tryptophan.


1985 ◽  
Vol 249 (6) ◽  
pp. F789-F798 ◽  
Author(s):  
A. M. Kahn ◽  
E. J. Weinman

The transport of urate in the mammalian nephron is largely confined to the proximal tubule. Depending on the species, net reabsorption or net secretion is observed. The rat, like the human and the mongrel dog, demonstrates net reabsorption of urate and has been the most extensively studied species. The unidirectional reabsorption and secretion of urate in the rat proximal tubule occur via a passive and presumably paracellular route and by a mediated transcellular route. The reabsorption of urate, and possibly its secretion, can occur against an electrochemical gradient. A variety of drugs and other compounds affect the reabsorption and secretion of urate. The effects of these agents depend on their site of application (luminal or blood), concentration, and occasionally their participation in transport processes that do not have affinity for urate. Recent studies with renal brush border and basolateral membrane vesicles from the rat and brush border vesicles from the dog have determined the mechanisms for urate transport across the luminal and antiluminal membranes of the proximal tubule cell. Brush border membrane vesicles contain an anion exchanger with affinity for urate, hydroxyl ion, bicarbonate, chloride, lactate, p-aminohippurate (PAH), and a variety of other organic anions. Basolateral membrane vesicles contain an anion exchanger with affinity for urate and chloride but not for PAH. Both membrane vesicle preparations also permit urate translocation by simple diffusion. A model for the transcellular reabsorption and secretion of urate in the rat proximal tubule is proposed. This model is based on the vesicle studies, and it can potentially explain the majority of urate transport data obtained with in vivo techniques.


1988 ◽  
Vol 254 (5) ◽  
pp. F711-F718 ◽  
Author(s):  
P. T. Cheung ◽  
M. R. Hammerman

To define the mechanism by which glucose is transported across the basolateral membrane of the renal proximal tubular cell, we measured D-[14C]glucose uptake in basolateral membrane vesicles from rabbit kidney. Na+-dependent D-glucose transport, demonstrable in brush-border vesicles, could not be demonstrated in basolateral membrane vesicles. In the absence of Na+, the uptake of D-[14C]glucose in basolateral vesicles was more rapid than that of L-[3H]glucose over a concentration range of 1-50 mM. Subtraction of the latter from the former uptakes revealed a saturable process with apparent Km of 9.9 mM and Vmax of 0.80 nmol.mg protein-1.s-1. To characterize the transport component of D-glucose uptake in basolateral vesicles, we measured trans stimulation of 2 mM D-[14C]glucose entry in the absence of Na+. Trans stimulation could be effected by preloading basolateral vesicles with D-glucose, 2-deoxy-D-glucose, or 3-O-methyl-D-glucose, but not with L-glucose or alpha-methyl-D-glucoside. Trans-stimulated D-[14C]glucose uptake was inhibited by 0.1 mM phloretin or cytochalasin B but not phlorizin. In contrast, Na+-dependent D-[14C]glucose transport in brush-border vesicles was inhibited by phlorizin but not phloretin or cytochalasin B. Our findings are consistent with the presence of a Na+-independent D-glucose transporter in the proximal tubular basolateral membrane with characteristics similar to those of transporters present in nonepithelial cells.


1989 ◽  
Vol 984 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Hans Røigaard-Petersen ◽  
Christian Jacobsen ◽  
Henrik Jessen ◽  
Steen Mollerup ◽  
M. Iqbal Sheikh

1983 ◽  
Vol 244 (6) ◽  
pp. F686-F695 ◽  
Author(s):  
K. E. Jorgensen ◽  
U. Kragh-Hansen ◽  
H. Roigaard-Petersen ◽  
M. I. Sheikh

The mechanisms of tubular transport of citrate in renal basolateral and luminal membrane vesicles were studied under various experimental conditions. Both membrane preparations take up citrate by a Na+-dependent transport system, although with different characteristics. The uptake of citrate by basolateral membrane vesicles was insensitive to changes in membrane potential, which is indicative of electroneutral transport of the anion. The Na+-dependent uptake of citrate by luminal membrane vesicles was influenced by the presence of Na+salt anions of different permeabilities in the order: chloride greater than sulfate greater than gluconate. Furthermore, addition of citrate to membrane vesicle-potential-sensitive dye suspensions resulted in optical changes of the dye, indicative of electrogenic transfer of this compound. The apparent affinity of the citrate transport system located in luminal membrane vesicles, in contrast to basolateral membrane vesicles, was sensitive to changes in medium pH and was higher than that of basolateral membrane vesicles in the pH range studied. On the basis of these results a model for the transport of citrate by rabbit kidney proximal tubule is proposed.


Sign in / Sign up

Export Citation Format

Share Document