intracellular membrane
Recently Published Documents


TOTAL DOCUMENTS

341
(FIVE YEARS 41)

H-INDEX

58
(FIVE YEARS 5)

2022 ◽  
Vol 15 (1) ◽  
pp. 76
Author(s):  
Yassamine Ouerdane ◽  
Mohamed Y. Hassaballah ◽  
Abdalrazeq Nagah ◽  
Tarek M. Ibrahim ◽  
Hosny A. H. Mohamed ◽  
...  

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by bradykinesia, rigidity, and tremor. Considerable progress has been made to understand the exact mechanism leading to this disease. Most of what is known comes from the evidence of PD brains’ autopsies showing a deposition of Lewy bodies—containing a protein called α-synuclein (α-syn)—as the pathological determinant of PD. α-syn predisposes neurons to neurotoxicity and cell death, while the other associated mechanisms are mitochondrial dysfunction and oxidative stress, which are underlying precursors to the death of dopaminergic neurons at the substantia nigra pars compacta leading to disease progression. Several mechanisms have been proposed to unravel the pathological cascade of these diseases; most of them share a particular similarity: cell-to-cell communication through exosomes (EXOs). EXOs are intracellular membrane-based vesicles with diverse compositions involved in biological and pathological processes, which their secretion is driven by the NLR family pyrin domain-containing three proteins (NLRP3) inflammasome. Toxic biological fibrils are transferred to recipient cells, and the disposal of damaged organelles through generating mitochondrial-derived vesicles are suggested mechanisms for developing PD. EXOs carry various biomarkers; thus, they are promising to diagnose different neurological disorders, including neurodegenerative diseases (NDDs). As nanovesicles, the applications of EXOs are not only restricted as diagnostics but also expanded to treat NDDs as therapeutic carriers and nano-scavengers. Herein, the aim is to highlight the potential incrimination of EXOs in the pathological cascade and progression of PD and their role as biomarkers and therapeutic carriers for diagnosing and treating this neuro-debilitating disorder.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Maria Sol Herrera-Cruz ◽  
Megan C. Yap ◽  
Nasser Tahbaz ◽  
Keelie Phillips ◽  
Laurel Thomas ◽  
...  

Abstract Background Rab32 is a small GTPase associated with multiple organelles but is particularly enriched at the endoplasmic reticulum (ER). Here, it controls targeting to mitochondria-ER contacts (MERCs), thus influencing composition of the mitochondria-associated membrane (MAM). Moreover, Rab32 regulates mitochondrial membrane dynamics via its effector dynamin-related protein 1 (Drp1). Rab32 has also been reported to induce autophagy, an essential pathway targeting intracellular components for their degradation. However, no autophagy-specific effectors have been identified for Rab32. Similarly, the identity of the intracellular membrane targeted by this small GTPase and the type of autophagy it induces are not known yet. Results To investigate the target of autophagic degradation mediated by Rab32, we tested a large panel of organellar proteins. We found that a subset of MERC proteins, including the thioredoxin-related transmembrane protein TMX1, are specifically targeted for degradation in a Rab32-dependent manner. We also identified the long isoform of reticulon-3 (RTN3L), a known ER-phagy receptor, as a Rab32 effector. Conclusions Rab32 promotes degradation of mitochondrial-proximal ER membranes through autophagy with the help of RTN3L. We propose to call this type of selective autophagy “MAM-phagy”.


2021 ◽  
Author(s):  
Corelle A. Z. Rokicki ◽  
James R. Brenner ◽  
Alexander H. Dills ◽  
Julius J. Judd ◽  
Jemila C. Kester ◽  
...  

Mycobacteria spatially organize their plasma membrane, and many enzymes involved in envelope biosynthesis associate with a membrane compartment termed the intracellular membrane domain (IMD). The IMD is concentrated in the polar regions of growing cells and becomes less polarized under non-growing conditions. Because mycobacteria elongate from the poles, the observed polar localization of the IMD during growth likely supports the localized biosynthesis of envelope components. While we have identified more than 300 IMD-associated proteins by proteomic analyses, only a handful of these have been verified by independent experimental methods. Furthermore, some IMD-associated proteins may have escaped proteomic identification and remain to be identified. Here, we visually screened an arrayed library of 523 Mycobacterium smegmatis strains, each producing a Dendra2-FLAG-tagged recombinant protein. We identified 29 fusion proteins that showed polar fluorescence patterns characteristic of IMD proteins. Twenty of these had previously been suggested to localize to the IMD based on proteomic data. Of the nine remaining IMD candidate proteins, three were confirmed by biochemical methods to be associated with the IMD. Taken together, this new co-localization strategy is effective in verifying the IMD association of proteins found by proteomic analyses, while facilitating the discovery of additional IMD-associated proteins. Importance The intracellular membrane domain (IMD) is a membrane subcompartment found in Mycobacterium smegmatis cells. Proteomic analysis of purified IMD identified more than 300 proteins, including enzymes involved in cell envelope biosynthesis. However, proteomics on its own is unlikely to detect every IMD-associated protein because of technical and biological limitations. Here, we describe fluorescent protein co-localization as an alternative, independent approach. Using a combination of fluorescence microscopy, proteomics, and subcellular fractionation, we identified three new proteins associated with the IMD. Such a robust method to rigorously define IMD proteins will benefit future investigations to decipher the synthesis, maintenance and functions of this membrane domain, and help delineate a more general mechanisms of subcellular protein localization in mycobacteria.


2021 ◽  
Author(s):  
Chun Wan ◽  
Lauren Crisman ◽  
Bing Wang ◽  
Yuan Tian ◽  
Shifeng Wang ◽  
...  

Multimeric cargo adaptors such as AP2 play central roles in intracellular membrane trafficking. We recently discovered that the assembly of AP2 adaptor, a key player in clathrin-mediated endocytosis, is a highly organized process controlled by alpha and gamma adaptin binding protein (AAGAB, also known as p34). In this work, we demonstrate that besides AP2, AAGAB also regulates the assembly of AP1, a cargo adaptor involved in clathrin-mediated transport between the trans-Golgi and the endosome. AAGAB, however, is not involved in the formation of other adaptor complexes including AP3. AAGAB promotes AP1 assembly by binding and stabilizing the γ and σ subunits of AP1, and its mutation abolishes AP1 assembly and disrupts AP1-mediated cargo trafficking. Comparative proteomic analyses indicate that AAGAB mutation massively alters surface protein homeostasis and its loss-of-function phenotypes reflect the synergistic effects of AP1 and AP2 deficiency. Together, these findings establish AAGAB as an assembly chaperone for both AP1 and AP2 adaptors and pave the way for understanding the pathogenesis of AAGAB-linked diseases.


2021 ◽  
pp. mbc.E21-04-0191
Author(s):  
Thomas Torng ◽  
William Wickner

Intracellular membrane fusion requires Rab GTPases, tethers, SNAREs of the R, Qa, Qb, and Qc families, and SNARE chaperones of the Sec17 (SNAP), Sec18 (NSF), and SM (Sec1/Munc18) families. The vacuolar HOPS complex combines the functions of membrane tethering and SM catalysis of SNARE assembly. HOPS is activated for this catalysis by binding to the vacuolar lipids and Rab. Of the 8 major vacuolar lipids, we now report that phosphatidylinositol and phosphatidylinositol-3-phosphate are required to activate HOPS for SNARE complex assembly. These lipids plus ergosterol also allow full trans-SNARE complex assembly, yet do not support fusion, which is reliant on either phosphatidylethanolamine (PE) or on phosphatidic acid (PA), phosphatidylserine (PS), and diacylglycerol (DAG). Fusion with a synthetic tether and without HOPS, or even without SNAREs, still relies on either PE or on PS, PA, and DAG. These lipids are thus required for the terminal bilayer rearrangement step of fusion, distinct from the lipid requirements for the earlier step of activating HOPS for trans-SNARE assembly.


2021 ◽  
Author(s):  
Antonio Jesús Lara Ordóñez ◽  
Rachel Fasiczka ◽  
Yahaira Naaldijk ◽  
Sabine Hilfiker

Abstract Parkinson’s disease is a prominent and debilitating movement disorder characterized by the death of vulnerable neurons which share a set of structural and physiological properties. Over the recent years, increasing evidence indicates that Rab GTPases can directly as well as indirectly contribute to the cellular alterations leading to PD. Rab GTPases are master regulators of intracellular membrane trafficking events, and alterations in certain membrane trafficking steps can be particularly disruptive to vulnerable neurons. Here, we describe current knowledge on the direct links between altered Rab protein function and PD pathomechanisms.


Author(s):  
Jonathan Duncan ◽  
Arati Sridharan ◽  
Swathy Sampath Kumar ◽  
Diane Iradukunda ◽  
Jit Muthuswamy

Author(s):  
Hongyuan Jin ◽  
Yuanxin Tang ◽  
Liang Yang ◽  
Xueqiang Peng ◽  
Bowen Li ◽  
...  

Tumor progression involves invasion, migration, metabolism, autophagy, exosome secretion, and drug resistance. Cargos transported by membrane vesicle trafficking underlie all of these processes. Rab GTPases, which, through coordinated and dynamic intracellular membrane trafficking alongside cytoskeletal pathways, determine the maintenance of homeostasis and a series of cellular functions. The mechanism of vesicle movement regulated by Rab GTPases plays essential roles in cancers. Therefore, targeting Rab GTPases to adjust membrane trafficking has the potential to become a novel way to adjust cancer treatment. In this review, we describe the characteristics of Rab GTPases; in particular, we discuss the role of their activation in the regulation of membrane transport and provide examples of Rab GTPases regulating membrane transport in tumor progression. Finally, we discuss the clinical implications and the potential as a cancer therapeutic target of Rab GTPases.


2021 ◽  
Author(s):  
Roxana O. Florica

During the development of the nervous system, neurons are guided to their final targets by several well-known guidance cues. In Caenorhabditis elegans the expression of the UNC-6/Netrin guidance cue along the ventral cord attracts axons that express UNC-40, while repulsing axons that express both the UNC-5 and UNC-40 receptors. Lack of both UNC-40 and the novel protein ENU-3 enhanced the ventral guidance defects of the AVM and PVM (Yee et al., 2014). This suggests that ENU-3 functions in an UNC-6 dependent pathway parallel to UNC-40 in controlling migrations towards the ventral nerve cord. Mutations in all proteins of the ENU-3 family also enhance the motor neuron axon outgrowth defects of strains lacking UNC-6 or the UNC-5 receptor, thus they function in a parallel unknown pathway (Yee et al., 2011). Expression analyses in HeLa cells have determined that ENU-3 and one of its paralogs, C38D4.1 localize to the nuclear membrane/ER while another of its paralogs, K01G5.3 is an intracellular membrane-associated protein.


2021 ◽  
Author(s):  
Roxana O. Florica

During the development of the nervous system, neurons are guided to their final targets by several well-known guidance cues. In Caenorhabditis elegans the expression of the UNC-6/Netrin guidance cue along the ventral cord attracts axons that express UNC-40, while repulsing axons that express both the UNC-5 and UNC-40 receptors. Lack of both UNC-40 and the novel protein ENU-3 enhanced the ventral guidance defects of the AVM and PVM (Yee et al., 2014). This suggests that ENU-3 functions in an UNC-6 dependent pathway parallel to UNC-40 in controlling migrations towards the ventral nerve cord. Mutations in all proteins of the ENU-3 family also enhance the motor neuron axon outgrowth defects of strains lacking UNC-6 or the UNC-5 receptor, thus they function in a parallel unknown pathway (Yee et al., 2011). Expression analyses in HeLa cells have determined that ENU-3 and one of its paralogs, C38D4.1 localize to the nuclear membrane/ER while another of its paralogs, K01G5.3 is an intracellular membrane-associated protein.


Sign in / Sign up

Export Citation Format

Share Document