scholarly journals Formation of N-hydroxy-N-arylacetamides from nitroso aromatic compounds by the mammalian pyruvate dehydrogenase complex

1993 ◽  
Vol 290 (3) ◽  
pp. 783-790 ◽  
Author(s):  
T Yoshioka ◽  
T Uematsu

Bovine, human and porcine heart mitochondria and isolated porcine heart pyruvate dehydrogenase complex (PDHC) pyruvate-dependently form N-hydroxy-N-arylacetamides from nitroso aromatic compounds, including carcinogenic 4-biphenyl and 2-fluorenyl derivatives. The PDHC-catalysed formation of N-hydroxyacetanilide (N-OH-AA) from nitrosobenzene (NOB), through a Ping Pong mechanism, is optimum at pH 6.8 and is accelerated by thiamin pyrophosphate, but is inhibited by thiamin thiazolone pyrophosphate and ATP. Km pyruvate in the reaction is independent of pH over the range tested, whereas KmNOB increases at lower pH, owing to ionization of an active-site functional group of pKa 6.3. The enzymic ionization decreases log (Vmax/KmNOB). Isolated pyruvate dehydrogenase (E1), a constitutive enzyme of PDHC, forms N-OH-AA by itself and has comparable kinetic parameters to those of the PDHC-catalysed N-OH-AA formation. The catalytic efficiency of PDHC in the formation of N-hydroxy-N-arylacylamides, due to the steric limitation of the active site of E1, is lowered both by bulky alkyl groups of alpha-oxo acids and by p-substituents (but not an o-substituent) on nitrosobenzenes. These nitroso compounds serve as electrophiles in the reaction in which the reductive acetylation step is rate-limiting. The reaction mechanism and other factors affecting N-hydroxy-N-arylacylamide formation are discussed.

2003 ◽  
Vol 270 (5) ◽  
pp. 861-870 ◽  
Author(s):  
Markus Fries ◽  
Hitesh J. Chauhan ◽  
Gonzalo J. Domingo ◽  
Hyo-Il Jung ◽  
Richard N. Perham

2011 ◽  
Vol 437 (3) ◽  
pp. 565-574 ◽  
Author(s):  
Swetha Vijayakrishnan ◽  
Philip Callow ◽  
Margaret A. Nutley ◽  
Donna P. McGow ◽  
David Gilbert ◽  
...  

Crucial to glucose homoeostasis in humans, the hPDC (human pyruvate dehydrogenase complex) is a massive molecular machine comprising multiple copies of three distinct enzymes (E1–E3) and an accessory subunit, E3BP (E3-binding protein). Its icosahedral E2/E3BP 60-meric ‘core’ provides the central structural and mechanistic framework ensuring favourable E1 and E3 positioning and enzyme co-operativity. Current core models indicate either a 48E2+12E3BP or a 40E2+20E3BP subunit composition. In the present study, we demonstrate clear differences in subunit content and organization between the recombinant hPDC core (rhPDC; 40E2+20E3BP), generated under defined conditions where E3BP is produced in excess, and its native bovine (48E2+12E3BP) counterpart. The results of the present study provide a rational basis for resolving apparent differences between previous models, both obtained using rhE2/E3BP core assemblies where no account was taken of relative E2 and E3BP expression levels. Mathematical modelling predicts that an ‘average’ 48E2+12E3BP core arrangement allows maximum flexibility in assembly, while providing the appropriate balance of bound E1 and E3 enzymes for optimal catalytic efficiency and regulatory fine-tuning. We also show that the rhE2/E3BP and bovine E2/E3BP cores bind E3s with a 2:1 stoichiometry, and propose that mammalian PDC comprises a heterogeneous population of assemblies incorporating a network of E3 (and possibly E1) cross-bridges above the core surface.


1990 ◽  
Vol 268 (1) ◽  
pp. 69-75 ◽  
Author(s):  
K P Williams ◽  
P F Leadlay ◽  
P N Lowe

Pyruvate:ferredoxin oxidoreductase and the pyruvate dehydrogenase multi-enzyme complex both catalyse the CoA-dependent oxidative decarboxylation of pyruvate but differ in size, subunit composition and mechanism. Comparison of the pyruvate:ferredoxin oxidoreductase from the protozoon Trichomonas vaginalis and the pyruvate dehydrogenase component of the Escherichia coli pyruvate dehydrogenase complex shows that both are inactivated by incubation with pyruvate under aerobic conditions in the absence of co-substrates. However, only the former is irreversibly inhibited by incubation with hydroxypyruvate, and only the latter by incubation with bromopyruvate. Pyruvate:ferredoxin oxidoreductase activity is potently, but reversibly, inhibited by addition of bromopyruvate in the presence of CoA, and it is suggested that the mechanism involves formation of an adduct between CoA and bromopyruvate in the active site of the enzyme. It is proposed that both enzymes are inactivated by pyruvate through a mechanism involving oxidation of an enzyme-bound thiamin pyrophosphate/substrate adduct to form a tightly bound inhibitory species, possibly thiamin thiazolone pyrophosphate as hypothesized by Sumegi & Alkonyi.


1991 ◽  
Vol 278 (2) ◽  
pp. 423-427 ◽  
Author(s):  
J C Neagle ◽  
J G Lindsay

Selective proteolysis of the protein X subunit of native bovine heart pyruvate dehydrogenase complex may be accomplished without loss of overall complex activity. Partial loss of function occurs if Mg2+ and thiamin pyrophosphate are not present during proteinase arg C treatment as these cofactors are necessary to prevent cleavage of the E1 alpha subunit. Specific degradation of component X leads to marked alterations in the general enzymic properties of the complex. Lipoamide dehydrogenase (E3) exhibits a decreased affinity for the core assembly and the complex is much more susceptible to inactivation at high ionic strength. The inactive form of the complex is not readily re-activated by removal of salt. It appears that intact protein X and specifically the presence of its cleaved lipoyl domain is not essential for maintenance of an enzymically active pyruvate dehydrogenase complex. However, this protein has an important structural role in promoting the correct association of E3 with the E2 core assembly, an interaction that is required for optimal catalytic efficiency of the complex.


2007 ◽  
Vol 282 (38) ◽  
pp. 28106-28116 ◽  
Author(s):  
Sachin Kale ◽  
Palaniappa Arjunan ◽  
William Furey ◽  
Frank Jordan

Our crystallographic studies have shown that two active center loops (an inner loop formed by residues 401-413 and outer loop formed by residues 541-557) of the E1 component of the Escherichia coli pyruvate dehydrogenase complex become organized only on binding a substrate analog that is capable of forming a stable thiamin diphosphate-bound covalent intermediate. We showed that residue His-407 on the inner loop has a key role in the mechanism, especially in the reductive acetylation of the E. coli dihydrolipoamide transacetylase component, whereas crystallographic results showed a role of this residue in a disorder-order transformation of these two loops, and the ordered conformation gives rise to numerous new contacts between the inner loop and the active center. We present mapping of the conserved residues on the inner loop. Kinetic, spectroscopic, and crystallographic studies on some inner loop variants led us to conclude that charged residues flanking His-407 are important for stabilization/ordering of the inner loop thereby facilitating completion of the active site. The results further suggest that a disorder to order transition of the dynamic inner loop is essential for substrate entry to the active site, for sequestering active site chemistry from undesirable side reactions, as well as for communication between the E1 and E2 components of the E. coli pyruvate dehydrogenase multienzyme complex.


2003 ◽  
Vol 3 (3) ◽  
pp. 239-245 ◽  
Author(s):  
Peter Stacpoole ◽  
Renius Owen ◽  
Terence Flotte

Sign in / Sign up

Export Citation Format

Share Document