Expression of human all-trans-retinoic acid receptor β and its ligand-binding domain in Escherichia coli

1995 ◽  
Vol 308 (1) ◽  
pp. 353-359 ◽  
Author(s):  
M Berggren Söderlund ◽  
G Johannesson ◽  
G Fex

all-trans-Retinoic acid, one of the hormonally active derivatives of vitamin A, occurs physiologically in plasma at a concentration below 10 nmol/l. The methods currently used for its quantification are based on HPLC, need about 1 ml of serum, are relatively laborious and thus not well suited for mass analysis. The affinity and specificity of retinoic acid receptors for all-trans-retinoic acid encouraged us to express both the entire human retinoic acid receptor beta (RAR-beta) and two versions of its retinoic acid-binding domain in Escherichia coli in the hope that these recombinant proteins might be used as binders in a ligand-binding assay for all-trans-retinoic acid. The recombinant receptors, the whole receptor [RAR-beta-(V7-Q448)], corresponding to domains A-F, and the ligand-binding domain [RAR-beta-(E149-Q448)], corresponding to domains D-F, were expressed in the vector pET 3d/BL21 (DE3) as inclusion bodies, solubilized with guanidinium chloride, renatured and purified by ion-exchange chromatography. RAR-beta-(P193-Q448), corresponding to domains E-F, was expressed in the vector pET 3d/BL21(DE3)pLysS, and purified by reversed-phase chromatography. Under non-denaturing conditions, the expressed whole receptor [RAR-beta-(V7-Q448)] and the D-F construct (RAR-beta-(E149-Q448)] behaved chromatographically as monomeric proteins whereas the E-F construct [RAR-beta-(P193-Q448)] had a strong tendency to aggregate. RAR-beta-(V7-Q448) and RAR-beta-(E149-Q448) had similar Kd values for all-trans-retinoic acid (1.4 and 0.6 nmol/l respectively) whereas RAR-beta-(P193-Q448) bound all-trans-retinoic acid less avidly (Kd 9.6 nmol/l). 9-cis-Retinoic acid bound to RAR-beta-(E149-Q448) and RAR-beta-(V7-Q448) as avidly as all-trans-retinoic acid. Competition experiments showed weak or no binding of 4-oxo-all-trans-retinoic acid, 4-oxo-13-cis-retinoic acid, 13-cis-retinoic acid, acitretin and retinol by RAR-beta-(E149-Q448).

1996 ◽  
Vol 19 (5) ◽  
pp. 659-664 ◽  
Author(s):  
Toru SASAKI ◽  
Rumiko SHIMAZAWA ◽  
Takayuki SAWADA ◽  
Toru IIJIMA ◽  
Hiroshi FUKASAWA ◽  
...  

Nature ◽  
1995 ◽  
Vol 378 (6558) ◽  
pp. 681-689 ◽  
Author(s):  
Jean-Paul Renaud ◽  
Natacha Rochel ◽  
Marc Ruff ◽  
Valéria Vivat ◽  
Pierre Chambon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document